fog prediction
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 16)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Gaurav Shalin ◽  
Scott Pardoel ◽  
Edward D. Lemaire ◽  
Julie Nantel ◽  
Jonathan Kofman

Abstract Background Freezing of gait (FOG) is a walking disturbance in advanced stage Parkinson’s disease (PD) that has been associated with increased fall risk and decreased quality of life. Freezing episodes can be mitigated or prevented with external intervention such as visual or auditory cues, activated by FOG prediction and detection systems. While most research on FOG detection and prediction has been based on inertial measurement unit (IMU) and accelerometer data, plantar-pressure data may capture subtle weight shifts unique to FOG episodes. Different machine learning algorithms have been used for FOG detection and prediction; however, long short-term memory (LSTM) deep learning methods hold an advantage when dealing with time-series data, such as sensor data. This research aimed to determine if LSTM can be used to detect and predict FOG from plantar pressure data alone, specifically for use in a real-time wearable system. Methods Plantar pressure data were collected from pressure-sensing insole sensors worn by 11 participants with PD as they walked a predefined freeze-provoking path. FOG instances were labelled, 16 features were extracted, and the dataset was balanced and normalized (z-score). The resulting datasets were classified using long short-term memory neural-network models. Separate models were trained for detection and prediction. For prediction models, data before FOG were included in the target class. Leave-one-freezer-out cross validation was used for model evaluation. In addition, the models were tested on all non-freezer data to determine model specificity. Results The best FOG detection model had 82.1% (SD 6.2%) mean sensitivity and 89.5% (SD 3.6%) mean specificity for one-freezer-held-out cross validation. Specificity improved to 93.3% (SD 4.0%) when ignoring inactive state data (standing) and analyzing the model only on active states (turning and walking). The model correctly detected 95% of freeze episodes. The best FOG prediction method achieved 72.5% (SD 13.6%) mean sensitivity and 81.2% (SD 6.8%) mean specificity for one-freezer-held-out cross validation. Conclusions Based on FOG data collected in a laboratory, the results suggest that plantar pressure data can be used for FOG detection and prediction. However, further research is required to improve FOG prediction performance, including training with a larger sample of people who experience FOG.


Author(s):  
Clive E. Dorman ◽  
Andrey A. Grachev ◽  
Ismail Gultepe ◽  
Harindra J. S. Fernando
Keyword(s):  

Author(s):  
Qing Wang ◽  
Ryan T. Yamaguchi ◽  
John A. Kalogiros ◽  
Zachary Daniels ◽  
Denny P. Alappattu ◽  
...  

AbstractA total of 15 fog events from two field campaigns are investigated: the High Energy Laser in Fog (HELFOG) project (central California) and the Toward Improving Coastal Fog Prediction (C-FOG) project (Ferryland Newfoundland). Nearly identical sensors were used in both projects to sample fog droplet-size spectra, wind, turbulence, and thermodynamic properties near the surface. Concurrent measurements of visibility were made by the present weather detector in both experiments, with the addition of a two-ended transmissometer in the HELFOG campaign. The analyses focused first on contrasting the observed fog microphysics and the associated thermodynamics from fog events in the two locations. The optical attenuation by fog was investigated using three methods: (1) derived from Mie theory using the measured droplet-size distribution, (2) parametrized as a function of fog liquid water content, and (3) parametrized in terms of total fog droplet number concentration. The consistency of these methods was investigated. The HELFOG data result in an empirical relationship between the meteorological range and liquid water content. Validation of such relationship is problematic using the C-FOG data due to the presence of rain and other factors. The parametrization with droplet number concentration only does not provide a robust visibility calculation since it cannot represent the effects of droplet size on visibility. Finally, a preliminary analysis of the mixed fog/rain case is presented to illustrate the nature of the problem to promote future research.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258544
Author(s):  
Scott Pardoel ◽  
Gaurav Shalin ◽  
Edward D. Lemaire ◽  
Jonathan Kofman ◽  
Julie Nantel

Freezing of gait (FOG) is an intermittent walking disturbance experienced by people with Parkinson’s disease (PD). Wearable FOG identification systems can improve gait and reduce the risk of falling due to FOG by detecting FOG in real-time and providing a cue to reduce freeze duration. However, FOG prediction and prevention is desirable. Datasets used to train machine learning models often generate ground truth FOG labels based on visual observation of specific lower limb movements (event-based definition) or an overall inability to walk effectively (period of gait disruption based definition). FOG definition ambiguity may affect model performance, especially with respect to multiple FOG in rapid succession. This research examined whether merging multiple freezes that occurred in rapid succession could improve FOG detection and prediction model performance. Plantar pressure and lower limb acceleration data were used to extract a feature set and train decision tree ensembles. FOG was labeled using an event-based definition. Additional datasets were then produced by merging FOG that occurred in rapid succession. A merging threshold was introduced where FOG that were separated by less than the merging threshold were merged into one episode. FOG detection and prediction models were trained for merging thresholds of 0, 1, 2, and 3 s. Merging slightly improved FOG detection model performance; however, for the prediction model, merging resulted in slightly later FOG identification and lower precision. FOG prediction models may benefit from using event-based FOG definitions and avoiding merging multiple FOG in rapid succession.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6446
Author(s):  
Tahjid Ashfaque Mostafa ◽  
Sara Soltaninejad ◽  
Tara L. McIsaac ◽  
Irene Cheng

Freezing of Gait (FOG) is an impairment that affects the majority of patients in the advanced stages of Parkinson’s Disease (PD). FOG can lead to sudden falls and injuries, negatively impacting the quality of life for the patients and their families. Rhythmic Auditory Stimulation (RAS) can be used to help patients recover from FOG and resume normal gait. RAS might be ineffective due to the latency between the start of a FOG event, its detection and initialization of RAS. We propose a system capable of both FOG prediction and detection using signals from tri-axial accelerometer sensors that will be useful in initializing RAS with minimal latency. We compared the performance of several time frequency analysis techniques, including moving windows extracted from the signals, handcrafted features, Recurrence Plots (RP), Short Time Fourier Transform (STFT), Discreet Wavelet Transform (DWT) and Pseudo Wigner Ville Distribution (PWVD) with Deep Learning (DL) based Long Short Term Memory (LSTM) and Convolutional Neural Networks (CNN). We also propose three Ensemble Network Architectures that combine all the time frequency representations and DL architectures. Experimental results show that our ensemble architectures significantly improve the performance compared with existing techniques. We also present the results of applying our method trained on a publicly available dataset to data collected from patients using wearable sensors in collaboration with A.T. Still University.


Author(s):  
Tahjid Ashfaque Mostafa ◽  
Sara Soltaninejad ◽  
Tara L. McIsaac ◽  
Irene Cheng

Freezing of Gait (FOG) is an impairment that affects the majority of patients in the advanced stages of Parkinson’s Disease (PD). FOG can lead to sudden falls and injuries, negatively impacting the quality of life for the patients and their families. Rhythmic Auditory Stimulation (RAS) can be used to help patients recover from FOG and resume normal gait. RAS might be ineffective due to the latency between the start of a FOG event, it’s detection and initialization of RAS. We propose a system capable of both FOG prediction and detection using signals from tri-axial accelerometer sensors that will be useful in initializing RAS with minimal latency. We compared the performance of several time frequency analysis techniques, including moving windows extracted from the signals, handcrafted features, Recurrence Plots (RP), Short Time Fourier Transform (STFT), Discreet Wavelet Transform (DWT) and Pseudo Wigner Ville Distribution (PWVD) with Deep Learning (DL) based Long Short Term Memory (LSTM) and Convolutional Neural Networks (CNN). We also propose three Ensemble Network Architectures that combine all the time frequency representations and DL architectures. Experimental results show that our ensemble architectures significantly improve the performance compared with existing techniques. We also present the results of applying our method trained on publicly available dataset to data collected from patients using wearable sensors in collaboration with A.T. Still University.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5232
Author(s):  
Jin-Hyun Han ◽  
Kuk-Jin Kim ◽  
Hyun-Seok Joo ◽  
Young-Hyun Han ◽  
Young-Taeg Kim ◽  
...  

Sea fog is a natural phenomenon that reduces the visibility of manned vehicles and vessels that rely on the visual interpretation of traffic. Fog clearance, also known as fog dissipation, is a relatively under-researched area when compared with fog prediction. In this work, we first analyzed meteorological observations that relate to fog dissipation in Incheon port (one of the most important ports for the South Korean economy) and Haeundae beach (the most populated and famous resort beach near Busan port). Next, we modeled fog dissipation using two separate algorithms, classification and regression, and a model with nine machine learning and three deep learning techniques. In general, the applied methods demonstrated high prediction accuracy, with extra trees and recurrent neural nets performing best in the classification task and feed-forward neural nets in the regression task.


2021 ◽  
pp. 100038
Author(s):  
Hamid Kamangir ◽  
Waylon Collins ◽  
Philippe Tissot ◽  
Scott A. King ◽  
Hue Thi Hong Dinh ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Zhonelue Chen ◽  
Gen Li ◽  
Chao Gao ◽  
Yuyan Tan ◽  
Jun Liu ◽  
...  

PurposeThe purpose of this study was to introduce an orthogonal experimental design (OED) to improve the efficiency of building and optimizing models for freezing of gait (FOG) prediction.MethodsA random forest (RF) model was developed to predict FOG by using acceleration signals and angular velocity signals to recognize possible precursor signs of FOG (preFOG). An OED was introduced to optimize the feature extraction parameters.ResultsThe main effects and interaction among the feature extraction hyperparameters were analyzed. The false-positive rate, hit rate, and mean prediction time (MPT) were 27%, 68%, and 2.99 s, respectively.ConclusionThe OED was an effective method for analyzing the main effects and interactions among the feature extraction parameters. It was also beneficial for optimizing the feature extraction parameters of the FOG prediction model.


Sign in / Sign up

Export Citation Format

Share Document