scholarly journals Herpes simplex virus 1 infection dampens the immediate early antiviral innate immunity signaling from peroxisomes by tegument protein VP16

2017 ◽  
Vol 14 (1) ◽  
Author(s):  
Chunfu Zheng ◽  
Chenhe Su
2018 ◽  
Vol 92 (15) ◽  
Author(s):  
Jian Huang ◽  
Hongjuan You ◽  
Chenhe Su ◽  
Yangxin Li ◽  
Shunhua Chen ◽  
...  

ABSTRACTCytosolic DNA arising from intracellular pathogens is sensed by cyclic GMP-AMP synthase (cGAS) and triggers a powerful innate immune response. However, herpes simplex virus 1 (HSV-1), a double-stranded DNA virus, has developed multiple mechanisms to attenuate host antiviral machinery and facilitate viral infection and replication. In the present study, we found that HSV-1 tegument protein VP22 acts as an inhibitor of cGAS/stimulator of interferon genes (cGAS/STING)-mediated production of interferon (IFN) and its downstream antiviral genes. Our results showed that ectopic expression of VP22 decreased cGAS/STING-mediated IFN-β promoter activation and IFN-β production. Infection with wild-type (WT) HSV-1, but not VP22-deficient virus (ΔVP22), inhibited immunostimulatory DNA (ISD)-induced activation of the IFN signaling pathway. Further study showed that VP22 interacted with cGAS and inhibited the enzymatic activity of cGAS. In addition, stable knockdown of cGAS facilitated the replication of ΔVP22 virus but not the WT. In summary, our findings indicate that HSV-1 VP22 acts as an antagonist of IFN signaling to persistently evade host innate antiviral responses.IMPORTANCEcGAS is very important for host defense against viral infection, and many viruses have evolved ways to target cGAS and successfully evade the attack by the immune system of their susceptible host. This study demonstrated that HSV-1 tegument protein VP22 counteracts the cGAS/STING-mediated DNA-sensing antiviral innate immunity signaling pathway by inhibiting the enzymatic activity of cGAS. The findings in this study will expand our understanding of the interaction between HSV-1 replication and the host DNA-sensing signaling pathway.


2017 ◽  
Vol 91 (16) ◽  
Author(s):  
Thibaut Deschamps ◽  
Maria Kalamvoki

ABSTRACT The stimulator of interferon (IFN) genes (STING) is a broad antimicrobial factor that restricts herpes simplex virus (HSV) by activating type I interferon and proinflammatory responses upon sensing of foreign DNA. UL46 is one of the most abundant tegument proteins of HSV-1, but a well-established function has yet to be found. We found that the HSV-1 UL46 protein interacts with and colocalizes with STING. A ΔUL46 virus displayed growth defects and activated innate immunity, but both effects were alleviated in STING knockdown cells. UL46 was also required for the inhibition of the 2′,3′-cyclic GMP-AMP (cGAMP)-dependent immune responses during infection. In cells expressing UL46, out of the context of the infection, innate immunity to a ΔICP0 virus was largely compromised, and that permitted ICP0-deficient mutants to replicate. The UL46-expressing cell lines also rescued the defects of the ΔUL46 virus and enhanced wild-type virus infection. The UL46-expressing cell lines did not activate interferon-stimulated gene (ISG) transcription following treatment with the noncanonical cyclic dinucleotide 2′,3′-cGAMP, suggesting that the STING pathway may be compromised. Indeed, we found that both proteins STING and IFI16 were eliminated in cells constitutively expressing UL46 and that the accumulation of their transcripts was blocked. Finally, we demonstrated that UL46 via its N terminus binds to STING and, via its C terminus, to TBK1. These interactions appear to modulate the functions of STING during HSV-1 infection. Taken together, our studies describe a novel function for one of the least-studied proteins of HSV, the tegument protein UL46, and that function involves the evasion of foreign DNA-sensing pathways. IMPORTANCE Herpes simplex virus 1 (HSV-1) afflicts 80% of the population worldwide, causing various diseases. After initial infection, the virus establishes latent reservoirs in sensory neurons and persists for life. Here we describe novel interactions between HSV-1 and the DNA sensor STING. We found that (i) HSV-1 tegument protein UL46 interacts with and colocalizes with STING; (ii) UL46 expressed out of the context of the infection blocks type I interferon triggered by STING stimuli, through the elimination of STING and of interferon-inducible protein 16 (IFI16); (iii) a ΔUL46 virus displayed growth defects, which were rescued in STING knockdown cells; (iv) the ΔUL46 virus failed to block innate immunity triggered by ligands of STING such as 2′,3′-cGAMP and also activated IFN-β and ISG expression; and (v) UL46 binds to both STING and TBK1 through different domains. We conclude that UL46 counteracts the actions of STING during HSV-1 infection.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Hongjuan You ◽  
Sisilia Zheng ◽  
Zhiming Huang ◽  
Yingying Lin ◽  
Qingtang Shen ◽  
...  

ABSTRACT TANK-binding kinase 1 (TBK1) is a key component of the antiviral immunity signaling pathway. It activates downstream interferon regulatory factor 3 (IRF3) and subsequent type I interferon (IFN-I) production. Herpes simplex virus type 1 (HSV-1) can antagonize host antiviral immune responses and lead to latent infection. Here, HSV-1 tegument protein UL46 was demonstrated to downregulate TBK1-dependent antiviral innate immunity. UL46 interacted with TBK1 and reduced TBK1 activation and its downstream signaling. Our results showed that UL46 impaired the interaction of TBK1 and IRF3 and downregulated the activation of IRF3 by inhibiting the dimerization of TBK1 to reduce the IFN-I production induced by TBK1 and immunostimulatory DNA. The IFN-I and its downstream antiviral genes induced by UL46-deficient HSV-1 (ΔUL46 HSV-1) were higher than those of wild-type HSV-1 (WT HSV-1). In addition, the stable knockdown of TBK1 facilitated the replication of ΔUL46 HSV-1, but not WT HSV-1. Together, these findings reveal a novel mechanism of immune evasion by HSV-1. IMPORTANCE HSV-1 has evolved multiple strategies to evade host antiviral responses and establish a lifelong latent infection, but the molecular mechanisms by which HSV-1 interrupts antiviral innate immunity are not completely understood. As TBK1 is very critical for antiviral innate immunity, it is of great interest to reveal the immune evasion mechanism of HSV-1 by targeting TBK1. In the present study, HSV-1 UL46 was found to inhibit the activation of IFN-I by targeting TBK1, suggesting that the evasion of TBK1 mediated antiviral innate immunity by HSV-1 UL46. Findings in this study will provide new insights into the host-virus interaction and help develop new approaches against HSV-1 infection.


Author(s):  
Huifang Zhu ◽  
Chunfu Zheng

SUMMARY Herpes simplex virus 1 (HSV-1) is very successful in establishing acute and latent infections in humans by counteracting host antiviral innate immune responses. HSV-1 has evolved various strategies to evade host antiviral innate immunity and some cellular survival-associated pathways. Since there is still no vaccine available for HSV-1, a continuous update of information regarding the interaction between HSV-1 infection and the host antiviral innate immunity will provide novel insights to develop new therapeutic strategies for HSV-1 infection and its associated diseases. Here, we update recent studies about how HSV-1 evades the host antiviral innate immunity, specifically how HSV-1 proteins directly or indirectly target the adaptors in the antiviral innate immunity signaling pathways to downregulate the signal transduction. Additionally, some classical intracellular stress responses, which also play important roles in defense of viral invasion, will be discussed here. With a comprehensive review of evasion mechanisms of antiviral innate immunity by HSV-1, we will be able to develop potential new targets for therapies and a possible vaccine against HSV-1 infections.


2014 ◽  
Vol 88 (13) ◽  
pp. 7445-7454 ◽  
Author(s):  
Y. Maruzuru ◽  
K. Shindo ◽  
Z. Liu ◽  
M. Oyama ◽  
H. Kozuka-Hata ◽  
...  

2019 ◽  
Vol 93 (7) ◽  
Author(s):  
Mingmin She ◽  
Haifang Jiang ◽  
Xiaoxiang Chen ◽  
Xiaoqing Chen ◽  
Xianjie Liu ◽  
...  

ABSTRACTThe stress response genes encoding GADD45γ, and to a lesser extent GADD45β, are activated early in infection with herpes simplex virus 1 (HSV-1). Cells that had been depleted of GADD45γ by transfection of short hairpin RNA (shRNA) or in which the gene had been knocked out (ΔGADD45γ) yielded significantly less virus than untreated infected cells. Consistent with lower virus yields, the ΔGADD45γ cells (either uninfected or infected with HSV-1) exhibited significantly higher levels of transcripts of a cluster of innate immunity genes, including those encoding IFI16, IFIT1, MDA5, and RIG-I. Members of this cluster of genes were reported by this laboratory to be activated concurrently with significantly reduced virus yields in cells depleted of LGP2 or HDAC4. We conclude that innate immunity to HSV-1 is normally repressed in unstressed cells and repression appears to be determined by two mechanisms. The first, illustrated here, is through activation by HSV-1 infection of the gene encoding GADD45γ. The second mechanism requires constitutively active expression of LGP2 and HDAC4.IMPORTANCEPrevious studies from our laboratory reported that knockout of some innate immunity genes was associated with increases in the expression of overlapping networks of genes and significant loss of the ability to support the replication of HSV-1; knockout of other genes was associated with decreases in the expression of overlapping networks of genes and had no effect on virus replication. In this report, we document that depletion of GADD45γ reduced virus yields concurrently with significant upregulation of the expression of a cluster of innate immunity genes comprising IFI16, IFIT1, MDA5, and RIG-I. This report differs from the preceding study in an important respect; i.e., the preceding study found no evidence to support the hypothesis that HSV-1 maintained adequate levels of LGP2 or HDAC4 to block upregulation of the cluster of innate immunity genes. We show that HSV-1 causes upregulation of the GADD45γ gene to prevent the upregulation of innate immunity genes.


2014 ◽  
Vol 89 (5) ◽  
pp. 2979-2984 ◽  
Author(s):  
Claire M. Metrick ◽  
Pooja Chadha ◽  
Ekaterina E. Heldwein

UL21 is a conserved protein in the tegument of alphaherpesviruses and has multiple important albeit poorly understood functions in viral replication and pathogenesis. To provide a roadmap for exploration of the multiple roles of UL21, we determined the crystal structure of its conserved N-terminal domain from herpes simplex virus 1 to 2.0-Å resolution, which revealed a novel sail-like protein fold. Evolutionarily conserved surface patches highlight residues of potential importance for future targeting by mutagenesis.


Sign in / Sign up

Export Citation Format

Share Document