scholarly journals Non-invasive prenatal testing reveals copy number variations related to pregnancy complications

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Guangping Wu ◽  
Rong Li ◽  
Chao Tong ◽  
Miaonan He ◽  
Zhiwei Qi ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Songchang Chen ◽  
Lanlan Zhang ◽  
Jiong Gao ◽  
Shuyuan Li ◽  
Chunxin Chang ◽  
...  

Non-invasive prenatal testing (NIPT) for common fetal trisomies is effective. However, the usefulness of cell-free DNA testing to detect other chromosomal abnormalities is poorly understood. We analyzed the positive rate at different read depths in next-generation sequencing (NGS) and identified a strategy for fetal copy number variant (CNV) detection in NIPT. Pregnant women who underwent NIPT by NGS at read depths of 4–6 M and fetuses with suspected CNVs were analyzed by amniocentesis and chromosomal microarray analysis (CMA). These fetus samples were re-sequenced at a read depth of 25 M and the positive detection rate was determined. With the increase in read depth, the positive CNV detection rate increased. The positive CNV detection rates at 25 M with small fragments were higher by NGS than by karyotype analysis. Increasing read depth in NGS improves the positive CNV detection rate while lowering the false positive detection rate. NIPT by NGS may be an accurate method of fetal chromosome analysis and reduce the rate of birth defects.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yunsheng Ge ◽  
Jia Li ◽  
Jianlong Zhuang ◽  
Jian Zhang ◽  
Yanru Huang ◽  
...  

Abstract Background Noninvasive prenatal testing (NIPT) has been wildly used to screen for common aneuplodies. In recent years, the test has been expanded to detect rare autosomal aneuploidies (RATs) and copy number variations (CNVs). This study was performed to investigate the performance of expanded noninvasive prenatal testing (expanded NIPT) in screening for common trisomies, sex chromosomal aneuploidies (SCAs), rare autosomal aneuploidies (RATs), and copy number variations (CNVs) and parental willingness for invasive prenatal diagnosis in a Chinese prenatal diagnosis center. Methods A total of 24,702 pregnant women were retrospectively analyzed at the Women and Children’s Hospital from January 2013 to April 2019, among which expanded NIPT had been successfully conducted in 24,702 pregnant women. The high-risk expanded NIPT results were validated by karyotype analysis and chromosomal microarray analysis. All the tested pregnant women were followed up for pregnancy outcomes. Results Of the 24,702 cases, successful follow-up was conducted in 98.77% (401/446) of cases with common trisomies and SCAs, 91.95% (80/87) of RAT and CNV cases, and 76.25% (18,429/24,169) of cases with low-risk screening results. The sensitivity of expanded NIPT was 100% (95% confidence interval[CI], 97.38–100%), 96.67%(95%CI, 82.78–99.92%), and 100%(95%CI, 66.37–100.00%), and the specificity was 99.92%(95%CI, 99.87–99.96%), 99.96%(95%CI, 99.91–99.98%), and 99.88% (95%CI, 99.82–99.93%) for the detection of trisomies 21, 18, and 13, respectively. Expanded NIPT detected 45,X, 47,XXX, 47,XXY, XYY syndrome, RATs, and CNVs with positive predictive values of 25.49%, 75%, 94.12%, 76.19%, 6.45%, and 50%, respectively. The women carrying fetuses with Trisomy 21/Trisomy 18/Trisomy 13 underwent invasive prenatal diagnosis and terminated their pregnancies at higher rates than those at high risk for SCAs, RATs, and CNVs. Conclusions Our study demonstrates that the expanded NIPT detects fetal trisomies 21, 18, and 13 with high sensitivity and specificity. The accuracy of detecting SCAs, RATs, and CNVs is still relatively poor and needs to be improved. With a high-risk expanded NIPT result, the women at high risk for common trisomies are more likely to undergo invasive prenatal diagnosis procedures and terminate their pregnancies than those with unusual chromosome abnormalities.


2020 ◽  
Author(s):  
Marcel Kucharik ◽  
Jaroslav Budis ◽  
Michaela Hyblova ◽  
Gabriel Minarik ◽  
Tomas Szemes

Copy number variations (CNVs) are a type of structural variant involving alterations in the number of copies of specific regions of DNA, which can either be deleted or duplicated. CNVs contribute substantially to normal population variability; however, abnormal CNVs cause numerous genetic disorders. Nowadays, several methods for CNV detection are used, from the conventional cytogenetic analysis through microarray-based methods (aCGH) to next-generation sequencing (NGS). We present GenomeScreen - NGS based CNV detection method based on a previously described CNV detection algorithm used for non-invasive prenatal testing (NIPT). We determined theoretical limits of its accuracy and confirmed it with extensive in-silico study and already genotyped samples. Theoretically, at least 6M uniquely mapped reads are required to detect CNV with a length of 100 kilobases (kb) or more with high confidence (Z-score > 7). In practice, the in-silico analysis showed the requirement at least 8M to obtain >99% accuracy (for 100 kb deviations). We compared GenomeScreen with one of the currently used aCGH methods in diagnostic laboratories, which has a 200 kb mean resolution. GenomeScreen and aCGH both detected 59 deviations, GenomeScreen furthermore detected 134 other (usually) smaller variations. Furthermore, the overall cost per sample is about 2-3x lower in the case of GenomeScreen.


2021 ◽  
Author(s):  
Meiying Cai ◽  
Na Lin ◽  
Xuemei Chen ◽  
Ying Li ◽  
Min Lin ◽  
...  

Abstract Non-invasive prenatal testing (NIPT) is a fast, safe, and non-disruptive diagnostic method. At present, few studies have evaluated the screening efficiency of NIPT positive predictive value (PPV) in study subjects. Here, the results of NIPT in pregnant women were retrospectively analysed, and the detection rate, PPV and follow-up data were evaluated to determine its clinical value. A large multicentre study was conducted involving 52,855 pregnant women who received NIPT. Based on gestational age, amniotic fluid or umbilical cord blood were extracted for simultaneous karyotype and chromosome microarray analysis (CMA) in NIPT-positive patients. Among the 52,855 cases, 754 were NIPT-positive, with a positivity rate of 1.4%. Karyotype analysis and/or CMA confirmed 323 cases of chromosomal abnormalities, with a PPV of 45.1%. PPV of Trisomy 21 (T21), Trisomy 18 (T18), Trisomy 13 (T13), sex chromosomal aneuploidies (SCA) and copy number variations (CNV) were 78.9%, 35.3%, 22.2%, 36.9% and 32.9%, respectively. The PPV of T21, T18, and T13 increased with age whereas, the PPV of SCA and CNVs had little correlation with age. The PPV was significantly high in patients with advanced age along with an abnormal ultrasound.NIPT had a high PPV for T21, and a low PPV for T13 and T18, while screening for SCA and CNVs showed clinical significance. However, in case of NIPT screening for SCA and CNVs, simultaneous karyotype and CMA should be performed to increase the detection rates. Interventional prenatal diagnosis is still required in NIPT-positive cases to avoid false positives or unnecessary termination of pregnancy.


2014 ◽  
Vol 207 (6) ◽  
pp. 287-288
Author(s):  
Bernhard G. Zimmermann ◽  
Eser Kirkizlar ◽  
Matthew Hill ◽  
Tudor Constantin ◽  
Styrmir Sigurjonsson ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Wang ◽  
Bin Zhang ◽  
Lingna Zhou ◽  
Qin Zhou ◽  
Yingping Chen ◽  
...  

ObjectiveTo evaluate the effectiveness of non-invasive prenatal screening (NIPS) in prenatal screening of fetal pathogenic copy number variants (CNVs).Materials and MethodsWe evaluated the prenatal screening capacity using traditional and retrospective approaches. For the traditional method, we evaluated 24,613 pregnant women who underwent NIPS; cases which fetal CNVs were suggested underwent prenatal diagnosis with chromosomal microarray analysis (CMA). For the retrospective method, we retrospectively evaluated 47 cases with fetal pathogenic CNVs by NIPS. A systematic literature search was performed to compare the evaluation efficiency.ResultsAmong the 24,613 pregnant women who received NIPS, 124 (0.50%) were suspected to have fetal CNVs. Of these, 66 women underwent prenatal diagnosis with CMA and 13 had true-positive results. The positive predictive value (PPV) of NIPS for fetal CNVs was 19.7%. Among 1,161 women who did not receive NIPS and underwent prenatal diagnosis by CMA, 47 were confirmed to have fetal pathogenic CNVs. Retesting with NIPS indicated that 24 of these 47 cases could also be detected by NIPS, representing a detection rate (DR) of 51.1%. In total, 10 publications, namely, six retrospective studies and four prospective studies, met our criteria and were selected for a detailed full-text review. The reported DRs were 61.10–97.70% and the PPVs were 36.11–80.56%. The sizes of CNVs were closely related to the accuracy of NIPS detection. The DR was 41.9% (13/31) in fetuses with CNVs ≤ 3 Mb, but was 55.0% (11/20) in fetuses with CNVs > 3 Mb. Finally, to intuitively show the CNVs accurately detected by NIPS, we mapped all CNVs to chromosomes according to their location, size, and characteristics. NIPS detected fetal CNVs in 2q13 and 4q35.ConclusionThe DR and PPV of NIPS for fetal CNVs were approximately 51.1% and 19.7%, respectively. Follow-up molecular prenatal diagnosis is recommended in cases where NIPS suggests fetal CNVs.


2016 ◽  
Vol 47 (1) ◽  
pp. 53-57 ◽  
Author(s):  
R. Li ◽  
J. Wan ◽  
Y. Zhang ◽  
F. Fu ◽  
Y. Ou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document