scholarly journals Noninvasive prenatal testing for fetal subchromosomal copy number variations and chromosomal aneuploidy by low‐pass whole‐genome sequencing

2019 ◽  
Vol 7 (6) ◽  
Author(s):  
Dongyi Yu ◽  
Kai Zhang ◽  
Meiyan Han ◽  
Wei Pan ◽  
Ying Chen ◽  
...  
2017 ◽  
Author(s):  
Xiaoji Chen ◽  
Jill M. Spoerke ◽  
Kathryn Yoh ◽  
Walter C. Darbonne ◽  
Ling-Yuh Huw ◽  
...  

2020 ◽  
Vol 22 (3) ◽  
pp. 429-434
Author(s):  
Aaron B. Beasley ◽  
Jacqueline Bentel ◽  
Richard J.N. Allcock ◽  
Tersia Vermeulen ◽  
Leslie Calapre ◽  
...  

2017 ◽  
Vol 94 (1) ◽  
Author(s):  
Zirui Dong ◽  
Weiwei Xie ◽  
Haixiao Chen ◽  
Jinjin Xu ◽  
Huilin Wang ◽  
...  

2021 ◽  
Vol 15 (Supplement_1) ◽  
pp. S035-S036
Author(s):  
I Al Bakir ◽  
K Curtius ◽  
K Smith ◽  
M Kopczynska ◽  
M Moorghen ◽  
...  

Abstract Background Patients with ulcerative colitis (UC) are enrolled into surveillance programs for the early detection of colorectal cancer (CRC). However, most patients under surveillance are low-risk and never progress to CRC, while a significant proportion of CRCs in UC form without a preceding confirmed diagnosis of dysplasia. High resolution chromosomal copy-number alteration (CNA) analysis of unselected formalin-fixed paraffin embedded biopsies taken at surveillance colonoscopies using low pass whole genome sequencing (lpWGS) offers an appealing approach to CRC stratification. Methods We conducted a retrospective case-control study to compare the CNA burden in four unselected non-neoplastic left-sided colorectal biopsies from patients with E2/E3 UC derived 1–5 years prior to HGD/CRC detection (cases), with that of biopsies from patients who subsequently remained HGD/CRC-free for at least 5 years (controls). The two patient groups were matched by age, gender, duration of IBD and PSC status. lpWGS was performed using a standardised pipeline for epithelial enrichment, DNA extraction, library preparation, next generation sequencing and bioinformatic analysis. Results 476 biopsies, derived from 42 cases and 77 controls, were analysed. Nearly 80% of patients had a detectable CNA in at least one of their biopsies, with the maximal CNA burden in a typical biopsy involving a median 1.1% of that biopsy’s genome. The CNA burden was significantly greater in the rectum compared to the sigmoid colon and descending colon. The most common CNA events were losses of between 1–30 megabases involving the sub-telomeric regions of chromosomes 5–9 and 22, which were found in similar proportion in both case and control biopsies. However, losses extending beyond sub-telomeric regions, as well as copy number gains, were found more frequently in cases biopsies (p<0.0001). The most discriminating CNA event was the presence of such a loss extending beyond subtelomeric regions in any of the patient’s four biopsies, with a high specificity exceeding 0.95 (see Kaplan-Meier plot). ROC analysis demonstrates that lpWGS output has a fair level of accuracy at predicting future HGD/CRC risk (AUC 0.73). Conclusion We identified multiple biopsies, predominantly in cases, with a surprisingly marked CNA burden involving over 10% of the genome, highlighting the fluid phenotype-genotype relationship. Non-dysplastic colitic epithelium can bear a significant burden of CNAs and maintain phenotypic stability for years without neoplastic transformation. Remarkably, by analysing the CNA burden of only four random biopsies, derived from less than 0.05% of the colonic surface area, we can significantly discriminate between case and control cohorts.


2018 ◽  
Vol 115 (42) ◽  
pp. 10804-10809 ◽  
Author(s):  
Suzanne Rohrback ◽  
Craig April ◽  
Fiona Kaper ◽  
Richard R. Rivera ◽  
Christine S. Liu ◽  
...  

Somatic copy number variations (CNVs) exist in the brain, but their genesis, prevalence, forms, and biological impact remain unclear, even within experimentally tractable animal models. We combined a transposase-based amplification (TbA) methodology for single-cell whole-genome sequencing with a bioinformatic approach for filtering unreliable CNVs (FUnC), developed from machine learning trained on lymphocyte V(D)J recombination. TbA–FUnC offered superior genomic coverage and removed >90% of false-positive CNV calls, allowing extensive examination of submegabase CNVs from over 500 cells throughout the neurogenic period of cerebral cortical development in Mus musculus. Thousands of previously undocumented CNVs were identified. Half were less than 1 Mb in size, with deletions 4× more common than amplification events, and were randomly distributed throughout the genome. However, CNV prevalence during embryonic cortical development was nonrandom, peaking at midneurogenesis with levels triple those found at younger ages before falling to intermediate quantities. These data identify pervasive small and large CNVs as early contributors to neural genomic mosaicism, producing genomically diverse cellular building blocks that form the highly organized, mature brain.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e15776-e15776
Author(s):  
Timour Baslan ◽  
Jie Wu ◽  
Yee Him Cheung ◽  
Jonathan Bermeo ◽  
Nevenka Dimitrova

e15776 Background: Pancreatic cancer (PDAC) is projected to become the second leading cause of cancer related mortality by 2030. Bulk whole genome sequencing studies of PDAC have characterized the landscape of clonal mutations and highlighted the prominence of copy number alterations (CNAs) in PDAC genomes. However, little is known with regards to the extent of sub-clonal heterogeneity of somatic CNAs and it is hypothesized that this heterogeneity is a contributing factor to the limited effectiveness of existing therapies. Methods: We retrieved absolute copy number information using bulk sparse whole genome sequencing of multi-region sampled PDAC samples as well as matching primary-metastasis tumor samples from over 100 patients. In addition, we analyzed copy number variations in a subset of these samples (n = 15) at single-cell resolution (~1000 cells in total). Results: We describe a detailed picture of sub-clonal CNAs genetic heterogeneity. Our results illustrate, among other findings, (1) extensive sub-clonal diversity of CNAs giving rise to many genetically unique sub-clonal cancer populations, (2) somatic mosaicism of chromosomal amplicons in single-cancer cells, (3) variation in the dosage of cancer genes, including the KRAS oncogene, in different tumor sub-clones and (4) somatic alterations, such as amplification of 8q11 containing the metastasis promoting gene IKBKB, associated with primary PDAC progression to liver metastasis. Conclusions: Our results offer an in-depth view of the sub-clonal heterogeneity of somatic CNAs in pancreatic cancer and illustrate ways in which such heterogeneity could lead to therapeutic resistance.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6283
Author(s):  
Migle Gabrielaite ◽  
Mathias Husted Torp ◽  
Malthe Sebro Rasmussen ◽  
Sergio Andreu-Sánchez ◽  
Filipe Garrett Vieira ◽  
...  

Copy-number variations (CNVs) have important clinical implications for several diseases and cancers. Relevant CNVs are hard to detect because common structural variations define large parts of the human genome. CNV calling from short-read sequencing would allow single protocol full genomic profiling. We reviewed 50 popular CNV calling tools and included 11 tools for benchmarking in a reference cohort encompassing 39 whole genome sequencing (WGS) samples paired current clinical standard—SNP-array based CNV calling. Additionally, for nine samples we also performed whole exome sequencing (WES), to address the effect of sequencing protocol on CNV calling. Furthermore, we included Gold Standard reference sample NA12878, and tested 12 samples with CNVs confirmed by multiplex ligation-dependent probe amplification (MLPA). Tool performance varied greatly in the number of called CNVs and bias for CNV lengths. Some tools had near-perfect recall of CNVs from arrays for some samples, but poor precision. Several tools had better performance for NA12878, which could be a result of overfitting. We suggest combining the best tools also based on different methodologies: GATK gCNV, Lumpy, DELLY, and cn.MOPS. Reducing the total number of called variants could potentially be assisted by the use of background panels for filtering of frequently called variants.


Sign in / Sign up

Export Citation Format

Share Document