scholarly journals Biomarkers for sepsis: more than just fever and leukocytosis—a narrative review

Critical Care ◽  
2022 ◽  
Vol 26 (1) ◽  
Author(s):  
Tatiana Barichello ◽  
Jaqueline S. Generoso ◽  
Mervyn Singer ◽  
Felipe Dal-Pizzol

AbstractA biomarker describes a measurable indicator of a patient's clinical condition that can be measured accurately and reproducibly. Biomarkers offer utility for diagnosis, prognosis, early disease recognition, risk stratification, appropriate treatment (theranostics), and trial enrichment for patients with sepsis or suspected sepsis. In this narrative review, we aim to answer the question, "Do biomarkers in patients with sepsis or septic shock predict mortality, multiple organ dysfunction syndrome (MODS), or organ dysfunction?" We also discuss the role of pro- and anti-inflammatory biomarkers and biomarkers associated with intestinal permeability, endothelial injury, organ dysfunction, blood–brain barrier (BBB) breakdown, brain injury, and short and long-term mortality. For sepsis, a range of biomarkers is identified, including fluid phase pattern recognition molecules (PRMs), complement system, cytokines, chemokines, damage-associated molecular patterns (DAMPs), non-coding RNAs, miRNAs, cell membrane receptors, cell proteins, metabolites, and soluble receptors. We also provide an overview of immune response biomarkers that can help identify or differentiate between systemic inflammatory response syndrome (SIRS), sepsis, septic shock, and sepsis-associated encephalopathy. However, significant work is needed to identify the optimal combinations of biomarkers that can augment diagnosis, treatment, and good patient outcomes.

PLoS ONE ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. e0225423
Author(s):  
Allen Chung-Cheng Huang ◽  
Tim Yu-Ting Lee ◽  
Meng-Cheng Ko ◽  
Chih-Hsien Huang ◽  
Tsai-Yu Wang ◽  
...  

2008 ◽  
Vol 45 (1) ◽  
pp. 106-116 ◽  
Author(s):  
Jeng-Yuan Wu ◽  
Mei-Yung Tsou ◽  
Tai-Hao Chen ◽  
Shiu-Jen Chen ◽  
Cheng-Ming Tsao ◽  
...  

2018 ◽  
Vol 08 (01) ◽  
pp. 025-031 ◽  
Author(s):  
Diana Pang ◽  
Dalia Bashir ◽  
Joseph Carcillo ◽  
Trung Nguyen ◽  
Rajesh Aneja ◽  
...  

AbstractThe incidence of multiple organ dysfunction syndrome (MODS) in sepsis varies from 17 to 73% and furthermore, increases the risk of death by 60% when controlled for the number of dysfunctional organs. Several MODS phenotypes exist, each unique in presentation and pathophysiology. Common to the phenotypes is the stimulation of the immune response by pathogen-associated molecular patterns (PAMPs), or danger-associated molecular patterns (DAMPs) causing an unremitting inflammation. Two of the MODS phenotypes are discussed in detail, thrombocytopenia-associated multiple organ failure (TAMOF) and the hyperinflammatory phenotype–macrophage activating syndrome (MAS) and hemophagocytic lymphohistiocytosis (HLH). In the end, we will briefly review the role of mitochondrial dysfunction as a significant contributor to the pathogenesis of MODS.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Iwona Bednarz-Misa ◽  
Magdalena Mierzchala-Pasierb ◽  
Patrycja Lesnik ◽  
Sylwia Placzkowska ◽  
Krzysztof Kedzior ◽  
...  

Oxidative stress and uncontrolled inflammation are hallmarks of sepsis, leading to organ failure and death. As demonstrated in animal studies, oxidative stress can be alleviated by antioxidant therapies. Paraoxonase-1 (PON1) is a serum-based antioxidant, anti-inflammatory agent, detoxifier, and quorum-sensing factor found to be a prognostic marker in sepsis. However, its associations with multiple organ dysfunction syndrome (MODS), a complication of sepsis and the leading cause of death in the surgical intensive care units (ICU), as well as with specific organ dysfunction, infection site, and invading pathogen remain unknown. Therefore, we measured arylesterase activity of PON1 in 87 individuals (35 with MODS) and related it to the clinical type, organ failure, infection site, pathogens, and hematological and biochemical indices of inflammation at admission to ICU and during a five-day follow-up. Suitability of PON1 and its indices derived from a follow-up as biomarkers in MODS was evaluated as well. MODS was associated with decreased PON1, more so in patients with septic shock, displaying an excellent accuracy as a marker of MODS (91%) and a fair one as a marker in differentiating septic shock from severe sepsis (76%). Decreased admission PON1 accompanied cardiovascular insufficiency (CVI), and, as its marker, PON1 displayed a good accuracy (82%). It was also associated with the abdomen as a site of infection but not with an invading pathogen. In multivariate analysis, 50% of variability in PON1 activity in patients with MODS was explained by the patients’ age, CVI, and abdomen as a site of infection. Patients with septic shock, CVI, and abdominal MODS had distinctly different dynamics of PON1 during a follow-up. Mean PON1 activity during the follow-up reflected the associations observed for admission PON1 but was also significantly associated with metabolic dysfunction. Our results show PON1 potential as a biomarker in MODS, particularly as an indicator of CVI.


Sign in / Sign up

Export Citation Format

Share Document