scholarly journals Heterochromatin: did H3K9 methylation evolve to tame transposons?

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Manisha Kabi ◽  
Guillaume J. Filion
Keyword(s):  
2007 ◽  
Vol 359 (3) ◽  
pp. 497-502 ◽  
Author(s):  
Keiki Sugimoto ◽  
Hidenori Kage ◽  
Naomi Aki ◽  
Atsushi Sano ◽  
Hiroshi Kitagawa ◽  
...  
Keyword(s):  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Alessandro Stirpe ◽  
Nora Guidotti ◽  
Sarah J Northall ◽  
Sinan Kilic ◽  
Alexandre Hainard ◽  
...  

The SUV39 class of methyltransferase enzymes deposits histone H3 lysine 9 di- and trimethylation (H3K9me2/3), the hallmark of constitutive heterochromatin. How these enzymes are regulated to mark specific genomic regions as heterochromatic is poorly understood. Clr4 is the sole H3K9me2/3 methyltransferase in the fission yeast Schizosaccharomyces pombe, and recent evidence suggests that ubiquitination of lysine 14 on histone H3 (H3K14ub) plays a key role in H3K9 methylation. However, the molecular mechanism of this regulation and its role in heterochromatin formation remain to be determined. Our structure-function approach shows that the H3K14ub substrate binds specifically and tightly to the catalytic domain of Clr4, and thereby stimulates the enzyme by over 250-fold. Mutations that disrupt this mechanism lead to a loss of H3K9me2/3 and abolish heterochromatin silencing similar to clr4 deletion. Comparison with mammalian SET domain proteins suggests that the Clr4 SET domain harbors a conserved sensor for H3K14ub, which mediates licensing of heterochromatin formation.


Genes ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 93 ◽  
Author(s):  
Robin Armstrong ◽  
Taylor Penke ◽  
Samuel Chao ◽  
Gabrielle Gentile ◽  
Brian Strahl ◽  
...  

Chromatin structure and its organization contributes to the proper regulation and timing of DNA replication. Yet, the precise mechanism by which chromatin contributes to DNA replication remains incompletely understood. This is particularly true for cell types that rely on polyploidization as a developmental strategy for growth and high biosynthetic capacity. During Drosophila larval development, cells of the salivary gland undergo endoreplication, repetitive rounds of DNA synthesis without intervening cell division, resulting in ploidy values of ~1350C. S phase of these endocycles displays a reproducible pattern of early and late replicating regions of the genome resulting from the activity of the same replication initiation factors that are used in diploid cells. However, unlike diploid cells, the latest replicating regions of polyploid salivary gland genomes, composed primarily of pericentric heterochromatic enriched in H3K9 methylation, are not replicated each endocycle, resulting in under-replicated domains with reduced ploidy. Here, we employ a histone gene replacement strategy in Drosophila to demonstrate that mutation of a histone residue important for heterochromatin organization and function (H3K9) but not mutation of a histone residue important for euchromatin function (H4K16), disrupts proper endoreplication in Drosophila salivary gland polyploid genomes thereby leading to DNA copy gain in pericentric heterochromatin. These findings reveal that H3K9 is necessary for normal levels of under-replication of pericentric heterochromatin and suggest that under-replication at pericentric heterochromatin is mediated through H3K9 methylation.


2013 ◽  
Author(s):  
Janine LoBello ◽  
Danielle DiPerna ◽  
Moly Gale ◽  
Aprill Watanabe ◽  
Galen Hostetter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document