scholarly journals Efficient and selective catalytic hydroxylation of unsaturated plant oils: a novel method for producing anti-pathogens

BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Ahmed M. Senan ◽  
Binru Yin ◽  
Yaoyao Zhang ◽  
Mustapha M. Nasiru ◽  
Yong‐Mei Lyu ◽  
...  

AbstractWith the increasing demand for antimicrobial agents and the spread of antibiotic resistance in pathogens, the exploitation of plant oils to partly replace antibiotic emerges as an important source of fine chemicals, functional food utility and pharmaceutical industries. This work introduces a novel catalytic method of plant oils hydroxylation by Fe(III) citrate monohydrate (Fe3+-cit.)/Na2S2O8 catalyst. Methyl (9Z,12Z)-octadecadienoate (ML) was selected as an example of vegetable oils hydroxylation to its hydroxy-conjugated derivatives (CHML) in the presence of a new complex of Fe(II)-species. Methyl 9,12-di-hydroxyoctadecanoate 1, methyl-9-hydroxyoctadecanoate 2 and methyl (10E,12E)-octadecanoate 3 mixtures is produced under optimized condition with oxygen balloon. The specific hydroxylation activity was lower in the case of using Na2S2O8 alone as a catalyst. A chemical reaction has shown the main process converted of plantoils hydroxylation and (+ 16 Da) of OH- attached at the methyl linoleate (ML-OH). HPLC and MALDI-ToF-mass spectrometry were employed for determining the obtained products. It was found that adding oxidizing agents (Na2S2O8) to Fe3+ in the MeCN mixture with H2O would generate the new complex of Fe(II)-species, which improves the C-H activation. Hence, the present study demonstrated a new functional method for better usage of vegetable oils.Producing conjugated hydroxy-fatty acids/esters with better antipathogenic properties. CHML used in food industry, It has a potential pathway to food safety and packaging process with good advantages, fundamental to microbial resistance. Lastly, our findings showed that biological monitoring of CHML-minimum inhibitory concentration (MIC) inhibited growth of various gram-positive and gram-negative bacteria in vitro study. The produced CHML profiles were comparable to the corresponding to previousstudies and showed improved the inhibition efficiency over the respective kanamycin derivatives.

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4383
Author(s):  
Barbara Lapinska ◽  
Aleksandra Szram ◽  
Beata Zarzycka ◽  
Janina Grzegorczyk ◽  
Louis Hardan ◽  
...  

Modifying the composition of dental restorative materials with antimicrobial agents might induce their antibacterial potential against cariogenic bacteria, e.g., S.mutans and L.acidophilus, as well as antifungal effect on C.albicans that are major oral pathogens. Essential oils (EOs) are widely known for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette, mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed significantly highest antibacterial activity against S.mutans and L.acidophilus among all tested EOs. Anise and limette EOs showed no antibacterial activity against S.mutans. All tested EOs exhibited antifungal activity against C.albicans, whereas cinnamon EO showed significantly highest and limette EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S.mutans and C.albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against L.acidophilus.


Author(s):  
Johanna Radeke ◽  
Annike B. Vogel ◽  
Falko Schmidt ◽  
Fatih Kilic ◽  
Stefan Repky ◽  
...  

Abstract Objectives To three-dimensionally evaluate deviations of full-arch intraoral (IO) scans from reference desktop scans in terms of translations and rotations of individual teeth and different types of (mal)occlusion. Materials and methods Three resin model pairs reflecting different tooth (mal)positions were mounted in the phantom head of a dental simulation unit and scanned by three dentists and three non-graduate investigators using a confocal laser IO scanner (Trios 3®). The tooth-crown surfaces of the IO scans and reference scans were superimposed by means of best-fit alignment. A novel method comprising the measurement of individual tooth positions was used to determine the deviations of each tooth in the six degrees of freedom, i.e., in terms of 3D translation and rotation. Deviations between IO and reference scans, among tooth-(mal)position models, and between dentists and non-graduate investigators were analyzed using linear mixed-effects models. Results The overall translational deviations of individual teeth on the IO scans were 76, 32, and 58 µm in the lingual, mesial, and intrusive directions, respectively, resulting in a total displacement of 114 µm. Corresponding rotational deviations were 0.58° buccal tipping, 0.04° mesial tipping, and 0.14° distorotation leading to a combined rotation of 0.78°. These deviations were the smallest for the dental arches with anterior crowding, followed by those with spacing and those with good alignment (p < 0.05). Results were independent of the operator’s level of education. Conclusions Compared to reference desktop scans, individual teeth on full-arch IO scans showed high trueness with total translational and rotational deviations < 115 µm and < 0.80°, respectively. Clinical relevance Available confocal laser IO scanners appear sufficiently accurate for diagnostic and therapeutic orthodontic applications. Results indicate that full-arch IO scanning can be delegated to non-graduate dental staff members.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2468 ◽  
Author(s):  
Lyn-Fay Lee ◽  
Vanitha Mariappan ◽  
Kumutha Malar Vellasamy ◽  
Vannajan Sanghiran Lee ◽  
Jamuna Vadivelu

Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to many conventional antibiotics. Therefore, alternative antimicrobial agents such as antimicrobial peptides (AMPs) are extensively studied to combat this issue. Our study aims to identify and understand the mode of action of the potential AMP(s) that are effective againstB. pseudomalleiin both planktonic and biofilm state as well as to predict the possible binding targets on using in vitro and in silico approaches. In the in vitro study, 11 AMPs were tested against 100B. pseudomalleiisolates for planktonic cell susceptibility, where LL-37, and PG1, demonstrated 100.0% susceptibility and TP1 demonstrated 83% susceptibility. Since theB. pseudomalleiactivity was reported on LL-37 and PG1, TP1 was selected for further investigation. TP1 inhibitedB. pseudomalleicells at 61.69 μM, and membrane blebbing was observed using scanning electron microscopy. Moreover, TP1 inhibitedB. pseudomalleicell growth, reaching bactericidal endpoint within 2 h post exposure as compared to ceftazidime (CAZ) (8 h). Furthermore, TP1 was shown to suppress the growth ofB. pseudomalleicells in biofilm state at concentrations above 221 μM. However, TP1 was cytotoxic to the mammalian cell lines tested. In the in silico study, molecular docking revealed that TP1 demonstrated a strong interaction to the common peptide or inhibitor binding targets for lipopolysaccharide ofEscherichia coli, as well as autolysin, pneumolysin, and pneumococcal surface protein A (PspA) ofStreptococcus pneumoniae. Homology modelledB. pseudomalleiPspA protein (YDP) also showed a favourable binding with a strong electrostatic contribution and nine hydrogen bonds. In conclusion, TP1 demonstrated a good potential as an anti-B. pseudomalleiagent.


2012 ◽  
Vol 3 (1) ◽  
pp. 15-21 ◽  
Author(s):  
SS Vasan ◽  
Srinivas Belur Veerachari

ABSTRACT Mobile phones usage has seen an exponential growth recently. With this increasing demand, the amount of electromagnetic radiation (EMR) exposed is also increasing. Hence, we studied the effect of these radiations on ejaculated human semen and speculate the contribution of these harmful radiations in male infertility. Samples exposed to EMR showed a significant decrease in sperm motility and viability, increase in reactive oxygen species (ROS) and DNA fragmentation index (DFI) compared to unexposed group. We concluded that mobile phones emit electromagnetic waves which lead to oxidative stress in human semen and also cause changes in DNA fragmentation. We extrapolate these findings to speculate that these radiations may negatively affect spermatozoa and impair male fertility. How to cite this article Veerachari SB, Vasan SS. Mobile Phone Electromagnetic Waves and Its Effect on Human Ejaculated Semen: An in vitro Study. Int J Infertility Fetal Med 2012;3(1):15-21.


NANO ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. 2050163
Author(s):  
Hongkun Gao ◽  
Ping Fan ◽  
Qizhen Xu ◽  
Yiting Li ◽  
Jianxin Wang ◽  
...  

Melanoma, one of the most malignant tumors, is difficult to treat due to its high drug resistance. Silver nanoparticles (AgNPs) are widely used as antimicrobial agents in biomedical fields. In this study, the spherical AgNPs with average sizes of 5[Formula: see text]nm were prepared using a dopamine reduction method. The in vitro study shows that AgNPs with the concentrations of 0.5[Formula: see text][Formula: see text]g/mL and 1[Formula: see text][Formula: see text]g/mL exhibit good biocompatibility to 3T3L1 fibroblast cells. AgNPs with the same concentrations significantly inhibited the growth of B16 melanoma cells. In culture with B16 cells, AgNPs induced intracellular oxidative stress by generating the reactive oxygen species and reducing the superoxide dismutase, which further reduces the mitochondrial membrane potential. Moreover, the damage in mitochondria could activate mitochondrion-mediated cell apoptosis. The B16 cells apoptosis was analyzed by FITC-Annexin V/propidium iodide double staining assay, which confirms that AgNPs caused the abundance of apoptotic cells in different stages. Thus, AgNPs displayed the antitumor activity in vitro. Then, the therapeutic efficacy in vivo was evaluated in mice-bearing B16 melanoma tumors. The obtained results show the antitumor ability of AgNPs and provide a potential strategy for cancer treatment.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Llaria Godi ◽  
Anna Lorenzin ◽  
Massimo De Cal ◽  
Claudio Ronco

Abstract Background and Aims In a continuous renal replacement therapy (CRRT) scenario, removal of anti-methicillin resistant Staphylococcus Aureus agents can be quantitatively important, thereby contributing to clinically relevant decreases in their plasma concentration during treatment. Extracorporeal elimination of antimicrobial agents is influenced by the dose and modality prescribed, as well as the sieving coefficient (SC) and adsorptive properties of the membrane used.The aim of this study was to document the specific SC and adsorptive capacity of three different membrane materials related to vancomycin, teicoplanin and linezolid. Method This in vitro study used a model of continuous veno-venous hemofiltration. 500 ml of whole blood from healthy donor spiked with one antibiotic under investigation was pumped (blood flow of 50 ml/min and ultrafiltrate flow of 10 ml/min) in a closed-circuit using polysulfone (PS), polymethylmethacrylate (PMMA) and polyacrylonitrile (PAN) membranes. Samples were collected from in-flow, out-flow and ultrafiltrate lines in a 360 min period. Antibiotic concentrations were measured to calculate SCs. Mass balance analysis was assessed to evaluate the adsorptive capacity of PS, PMMA and PAN membrane related to each antibiotic. Results The SCs were substantially affected by the hemodialyzers material in the case of Vancomycin, where PMMA membrane had higher SC (SC=0.89±0.01) compared to PAN (SC=0.79±0.02) and PS (SC=0.62±0.03) membranes. The effect of material was minor for Teicoplanin (Sc=0.12±0.05 for PS, Sc=0.17±0.05 for PMMA, Sc=0.19±0.00 for PAN) and no noticeable difference within hemodialyzers was found for Linezolid (Sc=0.92±0.03 for PS, Sc=0.95±0.01 for PMMA, Sc=0.95±0.00 for PAN). In terms of adsorptive capacity, PS and PMMA membranes showed higher interaction with Vancomycin and Teicoplanin compared with PAN membrane, while a small amount of Linezolid was adsorbed by all the three filters. The cumulative adsorbed amount of PS and PMMA of Teicoplanin were also clinically relevant (99.15 mg/m2 and 51.33 mg/m2 respectively) compared to PAN membrane (9.14 mg/m2). Conclusion PS, PMMA and PAN membranes behave differently in terms of sieving and adsorptive properties related to vancomycin, teicoplanin and linezolid. These differences may have a clinical influence on vancomycin and teicoplanin removal during CRRT, while linezolid variability during CRRT hasn’t to be ascribed for membrane material.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2723
Author(s):  
Łukasz Popiołek ◽  
Sylwia Szeremeta ◽  
Anna Biernasiuk ◽  
Monika Wujec

This research describes the synthesis and in vitro antimicrobial activity study of a series of 2,4,6-trimethylbenzenesulfonyl hydrazones. Twenty-five hydrazones (2–26) were synthesized on the basis of condensation reaction. The in vitro bioactivity study confirmed the potential application of obtained derivatives as antimicrobial agents. Among the tested compounds, the highest activity was discovered for derivative 24, which possessed minimal inhibitory concentration (MIC) ranging from 7.81 to 15.62 µg/mL against Gram-positive reference bacterial strains. Synthesized benzenesulfonyl hydrazones can be applied as potential ligands for the synthesis of bioactive metal complexes.


Sign in / Sign up

Export Citation Format

Share Document