scholarly journals Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae

2014 ◽  
Vol 7 (1) ◽  
Author(s):  
Jeroen G Nijland ◽  
Hyun Yong Shin ◽  
René M de Jong ◽  
Paul P de Waal ◽  
Paul Klaassen ◽  
...  
1999 ◽  
Vol 339 (2) ◽  
pp. 299-307 ◽  
Author(s):  
Arthur L. KRUCKEBERG ◽  
Ling YE ◽  
Jan A. BERDEN ◽  
Karel van DAM

The Hxt2 glucose transport protein of Saccharomyces cerevisiae was genetically fused at its C-terminus with the green fluorescent protein (GFP). The Hxt2-GFP fusion protein is a functional hexose transporter: it restored growth on glucose to a strain bearing null mutations in the hexose transporter genes GAL2 and HXT1 to HXT7. Furthermore, its glucose transport activity in this null strain was not markedly different from that of the wild-type Hxt2 protein. We calculated from the fluorescence level and transport kinetics that induced cells had 1.4×105 Hxt2-GFP molecules per cell, and that the catalytic-centre activity of the Hxt2-GFP molecule in vivo is 53 s-1 at 30 °C. Expression of Hxt2-GFP was induced by growth at low concentrations of glucose. Under inducing conditions the Hxt2-GFP fluorescence was localized to the plasma membrane. In a strain impaired in the fusion of secretory vesicles with the plasma membrane, the fluorescence accumulated in the cytoplasm. When induced cells were treated with high concentrations of glucose, the fluorescence was redistributed to the vacuole within 4 h. When endocytosis was genetically blocked, the fluorescence remained in the plasma membrane after treatment with high concentrations of glucose.


2007 ◽  
Vol 73 (8) ◽  
pp. 2432-2439 ◽  
Author(s):  
Carole Guillaume ◽  
Pierre Delobel ◽  
Jean-Marie Sablayrolles ◽  
Bruno Blondin

ABSTRACT Fructose utilization by wine yeasts is critically important for the maintenance of a high fermentation rate at the end of alcoholic fermentation. A Saccharomyces cerevisiae wine yeast able to ferment grape must sugars to dryness was found to have a high fructose utilization capacity. We investigated the molecular basis of this enhanced fructose utilization capacity by studying the properties of several hexose transporter (HXT) genes. We found that this wine yeast harbored a mutated HXT3 allele. A functional analysis of this mutated allele was performed by examining expression in an hxt1-7Δ strain. Expression of the mutated allele alone was found to be sufficient for producing an increase in fructose utilization during fermentation similar to that observed in the commercial wine yeast. This work provides the first demonstration that the pattern of fructose utilization during wine fermentation can be altered by expression of a mutated hexose transporter in a wine yeast. We also found that the glycolytic flux could be increased by overexpression of the mutant transporter gene, with no effect on fructose utilization. Our data demonstrate that the Hxt3 hexose transporter plays a key role in determining the glucose/fructose utilization ratio during fermentation.


1996 ◽  
Vol 16 (11) ◽  
pp. 6419-6426 ◽  
Author(s):  
S Ozcan ◽  
T Leong ◽  
M Johnston

The RGT1 gene of Saccharomyces cerevisiae plays a central role in the glucose-induced expression of hexose transporter (HXT) genes. Genetic evidence suggests that it encodes a repressor of the HXT genes whose function is inhibited by glucose. Here, we report the isolation of RGT1 and demonstrate that it encodes a bifunctional transcription factor. Rgt1p displays three different transcriptional modes in response to glucose: (i) in the absence of glucose, it functions as a transcriptional repressor; (ii) high concentrations of glucose cause it to function as a transcriptional activator; and (iii) in cells growing on low levels of glucose, Rgt1p has a neutral role, neither repressing nor activating transcription. Glucose alters Rgt1p function through a pathway that includes two glucose sensors, Snf3p and Rgt2p, and Grr1p. The glucose transporter Snf3p, which appears to be a low-glucose sensor, is required for inhibition of Rgt1p repressor function by low levels of glucose. Rgt2p, a glucose transporter that functions as a high-glucose sensor, is required for conversion of Rgt1p into an activator by high levels of glucose. Grr1p, a component of the glucose signaling pathway, is required both for inactivation of Rgt1p repressor function by low levels of glucose and for conversion of Rgt1p into an activator at high levels of glucose. Thus, signals generated by two different glucose sensors act through Grr1p to determine Rgt1p function.


2002 ◽  
Vol 68 (9) ◽  
pp. 4259-4265 ◽  
Author(s):  
Mickel L. A. Jansen ◽  
Johannes H. De Winde ◽  
Jack T. Pronk

ABSTRACT When wild-type Saccharomyces cerevisiae strains pregrown in maltose-limited chemostat cultures were exposed to excess maltose, release of glucose into the external medium was observed. Control experiments confirmed that glucose release was not caused by cell lysis or extracellular maltose hydrolysis. To test the hypothesis that glucose efflux involved plasma membrane glucose transporters, experiments were performed with an S. cerevisiae strain in which all members of the hexose transporter (HXT) gene family had been eliminated and with an isogenic reference strain. Glucose efflux was virtually eliminated in the hexose-transport-deficient strain. This constitutes experimental proof that Hxt transporters facilitate export of glucose from S. cerevisiae cells. After exposure of the hexose-transport-deficient strain to excess maltose, an increase in the intracellular glucose level was observed, while the concentrations of glucose 6-phosphate and ATP remained relatively low. These results demonstrate that glucose efflux can occur as a result of uncoordinated expression of the initial steps of maltose metabolism and the subsequent reactions in glucose dissimilation. This is a relevant phenomenon for selection of maltose-constitutive strains for baking and brewing.


BMC Genetics ◽  
2012 ◽  
Vol 13 (1) ◽  
pp. 107 ◽  
Author(s):  
Kevin L Dietzel ◽  
Vidhya Ramakrishnan ◽  
Erin E Murphy ◽  
Linda F Bisson

2007 ◽  
Vol 99 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Denise Suylekom ◽  
Elly Donselaar ◽  
Christophe Blanchetot ◽  
Lan Nguyen Ngoc ◽  
Bruno M. Humbel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document