intracellular glucose
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 19)

H-INDEX

36
(FIVE YEARS 4)

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5609
Author(s):  
Shengda Liu ◽  
Tengfei Yan ◽  
Jianxin Sun ◽  
Fei Li ◽  
Jiayun Xu ◽  
...  

The selective disruption of nutritional supplements and the metabolic routes of cancer cells offer a promising opportunity for more efficient cancer therapeutics. Herein, a biomimetic cascade polymer nanoreactor (GOx/CAT-NC) was fabricated by encapsulating glucose oxidase (GOx) and catalase (CAT) in a porphyrin polymer nanocapsule for combined starvation and photodynamic anticancer therapy. Internalized by cancer cells, the GOx/CAT-NCs facilitate microenvironmental oxidation by catalyzing endogenous H2O2 to form O2, thereby accelerating intracellular glucose catabolism and enhancing cytotoxic singlet oxygen (1O2) production with infrared irradiation. The GOx/CAT-NCs have demonstrated synergistic advantages in long-term starvation therapy and powerful photodynamic therapy (PDT) in cancer treatment, which inhibits tumor cells at more than twice the rate of starvation therapy alone. The biomimetic polymer nanoreactor will further contribute to the advancement of complementary modes of spatiotemporal control of cancer therapy.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Yongjin Xu ◽  
Richard M Bergenstal ◽  
Timothy C Dunn ◽  
Ramzi A Ajjan

Laboratory HbA1c does not always predict diabetes complications and our aim was to establish a glycaemic measure that better reflects intracellular glucose exposure in organs susceptible to complications. Six months of continuous glucose monitoring data and concurrent laboratory HbA1c were evaluated from 51 type 1 diabetes (T1D) and 80 type 2 diabetes (T2D) patients. Red blood cell (RBC) lifespan was estimated using a kinetic model of glucose and HbA1c, allowing the calculation of person-specific adjusted HbA1c (aHbA1c). Median (IQR) RBC lifespan was 100 (86–102) and 100 (83–101) days in T1D and T2D, respectively. The median (IQR) absolute difference between aHbA1c and laboratory HbA1c was 3.9 (3.0–14.3) mmol/mol [0.4 (0.3–1.3%)] in T1D and 5.3 (4.1–22.5) mmol/mol [0.5 (0.4–2.0%)] in T2D. aHbA1c and laboratory HbA1c showed clinically relevant differences. This suggests that the widely used measurement of HbA1c can underestimate or overestimate diabetes complication risks, which may have future clinical implications.


2021 ◽  
pp. 131218
Author(s):  
Lele Yang ◽  
Sijia Wu ◽  
Jinchao Wei ◽  
Jiagang Deng ◽  
Xiaotao Hou ◽  
...  

2021 ◽  
Author(s):  
Anna M Koester ◽  
Kamilla M Laidlaw ◽  
Silke Morris ◽  
Marie F.A. Cutiongco ◽  
Laura Stirrat ◽  
...  

Insulin stimulates glucose transport in muscle and adipocytes. This is achieved by regulated delivery of intracellular glucose transporter (GLUT4)-containing vesicles to the plasma membrane where they dock and fuse, resulting in increased cell surface GLUT4 levels. Recent work identified a potential further regulatory step, in which insulin increases the dispersal of GLUT4 in the plasma membrane away from the sites of vesicle fusion. EFR3 is a scaffold protein that facilitates localisation of phosphatidylinositol 4-kinase type IIIα to the cell surface. Here we show that knockdown of EFR3 or phosphatidylinositol 4-kinase type IIIα impairs insulin-stimulated glucose transport in adipocytes. Using direct stochastic reconstruction microscopy, we also show that EFR3 knockdown impairs insulin stimulated GLUT4 dispersal in the plasma membrane. We propose that EFR3 plays a previously unidentified role in controlling insulin-stimulated glucose transport by facilitating dispersal of GLUT4 within the plasma membrane.


Author(s):  
Marie Mita ◽  
Izumi Sugawara ◽  
Kazuki Harada ◽  
Motoki Ito ◽  
Mai Takizawa ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Olga N. Rozova ◽  
Galina A. Ekimova ◽  
Nikolai V. Molochkov ◽  
Alexander S. Reshetnikov ◽  
Valentina N. Khmelenina ◽  
...  

AbstractAerobic methanotrophic bacteria utilize methane as a growth substrate but are unable to grow on any sugars. In this study we have shown that two obligate methanotrophs, Methylotuvimicrobium alcaliphilum 20Z and Methylobacter luteus IMV-B-3098, possess functional glucose dehydrogenase (GDH) and gluconate kinase (GntK). The recombinant GDHs from both methanotrophs were homotetrameric and strongly specific for glucose preferring NAD+ over NADP+. GDH from Mtm. alcaliphilum was most active at pH 10 (Vmax = 95 U/mg protein) and demonstrated very high Km for glucose (91.8 ± 3.8 mM). GDH from Mb. luteus was most active at pH 8.5 (Vmax = 43 U/mg protein) and had lower Km for glucose (16 ± 0.6 mM). The cells of two Mtm. alcaliphilum double mutants with deletions either of the genes encoding GDH and glucokinase (gdh─/glk─) or of the genes encoding gluconate kinase and glucokinase (gntk─/glk─) had the lower glycogen level and the higher contents of intracellular glucose and trehalose compared to the wild type strain. The gntk─/glk─ knockout mutant additionally accumulated gluconic acid. These data, along with bioinformatics analysis, demonstrate that glycogen derived free glucose can enter the Entner–Doudoroff pathway or the pentose phosphate cycle in methanotrophs, bypassing glycolysis via the gluconate shunt.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuchen Zhang ◽  
Rui Guo ◽  
Sharon H. Kim ◽  
Hardik Shah ◽  
Shuting Zhang ◽  
...  

AbstractThe recently identified Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. How this novel beta-coronavirus virus, and coronaviruses more generally, alter cellular metabolism to support massive production of ~30 kB viral genomes and subgenomic viral RNAs remains largely unknown. To gain insights, transcriptional and metabolomic analyses are performed 8 hours after SARS-CoV-2 infection, an early timepoint where the viral lifecycle is completed but prior to overt effects on host cell growth or survival. Here, we show that SARS-CoV-2 remodels host folate and one-carbon metabolism at the post-transcriptional level to support de novo purine synthesis, bypassing viral shutoff of host translation. Intracellular glucose and folate are depleted in SARS-CoV-2-infected cells, and viral replication is exquisitely sensitive to inhibitors of folate and one-carbon metabolism, notably methotrexate. Host metabolism targeted therapy could add to the armamentarium against future coronavirus outbreaks.


2021 ◽  
Author(s):  
Olga Rozova ◽  
Galina Ekimova ◽  
Nikolai Molochkov ◽  
Alexander Reshetnikov ◽  
Valentina Khmelenina ◽  
...  

Abstract Aerobic methanotrophic bacteria utilize methane as a growth substrate but are unable to grow on any sugars. In this study we have shown that two obligate methanotrophs, Methylotuvimicrobium alcaliphilum 20Z and Methylobacter luteus IMV-B-3098, possess functional glucose dehydrogenase (GDH) and gluconate kinase (GntK). The recombinant GDHs from both methanotrophs were homotetrameric and strongly specific for glucose preferring NAD+ over NADP+. GDH from Mtm. alcaliphilum was most active at pH 10 (Vmax = 95 U/mg protein) and demonstrated very high Km for glucose (91.8 ± 3.8 mM). GDH from Mb. luteus was most active at pH 8.5 (Vmax = 43 U/mg protein) and had lower Km for glucose (16 ± 0.6 mM). The cells of two Mtm. alcaliphilum double mutants with deletions either of the genes encoding GDH and glucokinase (gdh─/glk─) or of the genes encoding gluconate kinase and glucokinase (gntk─/glk─) had the lower glycogen level and the higher contents of intracellular glucose and trehalose compared to the wild type strain. The gntk─/glk─ knockout mutant additionally accumulated gluconic acid. These data, along with bioinformatics analysis, demonstrate that glycogen derived free glucose can enter the Entner–Doudoroff pathway or the pentose phosphate cycle in methanotrophs, bypassing glycolysis via the gluconate shunt.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Fadi Almouhanna ◽  
Biljana Blagojevic ◽  
Suzan Can ◽  
Ali Ghanem ◽  
Stefan Wölfl

Abstract Background Aerobic glycolysis, discovered by Otto Warburg, is a hallmark of cancer metabolism even though not yet fully understood. The low activity of the cancerous pyruvate kinase isozyme (M2) is thought to play an important role by facilitating the conversion of glycolytic intermediates to other anabolic pathways to support tumors’ high proliferation rate. Methods Five breast cancer cell lines representing different molecular subtypes were used in this study where real time measurements of cellular bioenergetics and immunoblotting analysis of energy- and nutrient-sensing pathways were employed to investigate the potential effects of PKM2 allosteric activator (DASA-58) in glucose rewiring. Results In this study, we show that DASA-58 can induce pyruvate kinase activity in breast cancer cells without affecting the overall cell survival. The drug is also able to reduce TXNIP levels (an intracellular glucose sensor) probably through depletion of upstream glycolytic metabolites and independent of AMPK and ER signaling. AMPK shows an induction in phosphorylation (T172) in response to treatment an effect that can be potentiated by combining DASA-58 with other metabolic inhibitors. Conclusions Altogether, the multifaceted metabolic reprogramming induced by DASA-58 in breast cancer cells increases their susceptibility to other therapeutics suggesting the suitability of the intracellular glucose sensor TXNIP as a marker of PK activity.


2020 ◽  
Author(s):  
Robert J. Rabelo-Fernandez ◽  
Yasmarie Santana ◽  
Nilmary Grafals ◽  
Blanca Quiñones ◽  
Ginette Santiago ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document