scholarly journals Circulating tumor DNA methylation marker MYO1-G for diagnosis and monitoring of colorectal cancer

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Wu-Hao Lin ◽  
Jian Xiao ◽  
Zi-Yi Ye ◽  
Da-Liang Wei ◽  
Xiao-Hui Zhai ◽  
...  

Abstract Background Circulating tumor DNA (ctDNA) is a promising diagnostic and prognostic marker for many cancers and has been actively investigated in recent years. Previous studies have already demonstrated the potential use of ctDNA methylation markers in the diagnosis and prognostication of colorectal cancer (CRC). This retrospective study validated the value of methylation biomarker MYO1-G (cg10673833) in CRC diagnosis and disease monitoring using digital droplet PCR (ddPCR), a biomarker selected from our previous study due to its highest diagnostic efficiency. Methods Blood samples of CRC and control samples from tumor-free individuals at two institutions were collected to quantify the methylation ratio using ddPCR. Area under curve (AUC) was calculated after constructing receiver operating characteristic curve (ROC) for CRC diagnosis. Sensitivity and specificity were estimated and comparisons of methylation ratio in different groups were performed. Results We collected 673 blood samples from 272 patients diagnosed with stage I-IV CRC and 402 normal control samples. The methylation biomarker discriminated patients with CRC from normal controls with high accuracy (area under curve [AUC] = 0.94) and yielded a sensitivity of 84.3% and specificity of 94.5%. Besides, methylation ratio of MYO1-G was associated with tumor burden and treatment response. The methylation ratio was significantly lower in patients after their radical operation than when compared with those before surgeries (P < 0.001). Methylation ratio was significantly higher in patients with disease progression than those with stable disease (P = 0.002) and those with complete response or partial response (P = 0.009). Conclusions Together, our study indicated that this methylation marker can serve as a potential biomarker for diagnosing and monitoring CRC.

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15531-e15531
Author(s):  
Hiu Ting Chan ◽  
Satoshi Nagayama ◽  
Yoon Ming Chin ◽  
Masumi Otaki ◽  
Rie Hayashi ◽  
...  

e15531 Background: Although the prognosis of colorectal cancer (CRC) has improved in the past decade, a subset of CRC patients may still suffer from relapse due to the progression from minimal residual disease (MRD) after surgical resection. A sensitive and non-invasive method to detect MRD and early diagnosis of recurrence disease is warranted to start therapeutic interventions at an earlier timing and improving the overall survival rate. In this study, we have evaluated the feasibility of circulating tumor DNA (ctDNA) analysis to detect MRD and early detection of recurrence in CRC patients. Methods: Plasma samples were collected prospectively from 38 CRC patients (stage I to IV), who underwent surgical resection. Preoperative blood samples were obtained just before surgery and post-operative samples were collected at multiple time-points to monitor the changes of tumor mutation profiles. Tumor-derived mutations were detected in preoperative blood samples as well as surgically resected-tumor tissues using ultradeep targeted next generation sequencing. Patient-paired peripheral blood cells (PBCs) were sequenced concurrently to exclude clonal hematopoiesis-related mutations. Results: Among the 38 patients, 74 non-synonymous mutations were identified in tumor tissues and 64 mutations in the preoperative plasma samples. Paired PBCs sequencing identified 11 mutations in plasma samples to be clonal hematopoiesis-related mutations. After the exclusion of clonal hematopoiesis-related mutations, 34 (89.5%) of the 38 patients harbors at least one somatic mutation either from tumor tissues or plasma samples to be monitored longitudinally. ctDNA was detectable in 5 of 14 (36%) post-surgical samples of patients who did not receive adjuvant chemotherapy and in 9 of 18 (50%) post-chemotherapy samples. Up to date, 6 patients have been detected with clinical recurrence and ctDNA analysis identified all 6 recurrences before imaging. Serial ctDNA analyses were able to detect disease recurrence up to 6 months before imaging tests. Furthermore, all patients that were ctDNA negative post-operative or post-chemotherapy showed no signs of clinical relapse. Conclusions: Our current results indicate that ctDNA analysis allows the detection of MRD in CRC patients. The integration of ctDNA analysis with current standard monitoring guidelines holds great promise in early detection of recurrence to allow clinical intervention to be applied promptly.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Farah J. Nassar ◽  
Zahraa S. Msheik ◽  
Rihab R. Nasr ◽  
Sally N. Temraz

AbstractWorldwide, colorectal cancer (CRC) is a deadly disease whose death rate ranks second among cancers though its incidence ranks third. Early CRC detection is key and is associated with improved survival outcomes. However, existing tests for CRC diagnosis have several weaknesses thus rendering them inefficient. Moreover, reliable prognostic tests that can predict the overall cancer outcome and recurrence of the disease as well as predictive markers that can assess effectiveness of therapy are still lacking. Thus, shifting to noninvasive liquid biopsy or blood-based biomarkers is vital to improving CRC diagnosis, prognosis, and prediction. Methylated circulating tumor DNA (ctDNA) has gained increased attention as a type of liquid biopsy that is tumor-derived fragmented DNA with epigenetic alterations. Methylated ctDNA are more consistently present in blood of cancer patients as compared to mutated ctDNA. Hence, methylated ctDNA serves as a potential biomarker for CRC that is worth investigating. In this review, we explore what has been reported about methylated ctDNA as a biomarker for CRC diagnosis that can distinguish between CRC patients or those having adenoma and healthy controls as validated specifically through ROC curves. We also examine methylated ctDNA as a biomarker for CRC prognosis and prediction as confirmed through robust statistical analyses. Finally, we discuss the major technical challenges that limits the use of methylated ctDNA for clinical application and suggest possible recommendations to enhance its usage.


2019 ◽  
Vol 65 (5) ◽  
pp. 701-707
Author(s):  
Vitaliy Shubin ◽  
Yuriy Shelygin ◽  
Sergey Achkasov ◽  
Yevgeniy Rybakov ◽  
Aleksey Ponomarenko ◽  
...  

To determine mutations in the plasma KRAS gene in patients with colorectal cancer was the aim of this study. The material was obtained from 44 patients with colorectal cancer of different stages (T1-4N0-2bM0-1c). Plasma for the presence of KRAS gene mutation in circulating tumor DNA was investigated using digital droplet polymerase chain reaction (PCR). KRAS mutations in circulating tumor DNA isolated from 1 ml of plasma were detected in 13 (30%) patients with cancer of different stages. Of these, with stage II, there were 3 patients, with III - 5 and with IV - 5. Patients who did not have mutations in 1 ml of plasma were analyzed for mutations of KRAS in circulating tumor DNA isolated from 3 ml of plasma. Five more patients with KRAS mutations were found with II and III stages. The highest concentrations of circulating tumor DNA with KRAS mutation were found in patients with stage IV. The increase in plasma volume to 3 ml did not lead to the identification of mutations in I stage. This study showed that digital droplet PCR allows identification of circulating tumor DNA with the KRAS mutations in patients with stage II-IV of colon cancer. The results can be used to determine the degree of aggressiveness of the tumor at different stages of the disease, but not the 1st, and it is recommended to use a plasma volume of at least 3 ml.


2021 ◽  
Vol 14 (2) ◽  
pp. 128
Author(s):  
Silvia Galbiati ◽  
Francesco Damin ◽  
Dario Brambilla ◽  
Lucia Ferraro ◽  
Nadia Soriani ◽  
...  

It is widely accepted that assessing circular tumor DNA (ctDNA) in the plasma of cancer patients is a promising practice to evaluate somatic mutations from solid tumors noninvasively. Recently, it was reported that isolation of extracellular vesicles improves the detection of mutant DNA from plasma in metastatic patients; however, no consensus on the presence of dsDNA in exosomes has been reached yet. We analyzed small extracellular vesicle (sEV)-associated DNA of eleven metastatic colorectal cancer (mCRC) patients and compared the results obtained by microarray and droplet digital PCR (ddPCR) to those reported on the ctDNA fraction. We detected the same mutations found in tissue biopsies and ctDNA in all samples but, unexpectedly, in one sample, we found a KRAS mutation that was not identified either in ctDNA or tissue biopsy. Furthermore, to assess the exact location of sEV-associated DNA (outside or inside the vesicle), we treated with DNase I sEVs isolated with three different methodologies. We found that the DNA inside the vesicles is only a small fraction of that surrounding the vesicles. Its amount seems to correlate with the total amount of circulating tumor DNA. The results obtained in our experimental setting suggest that integrating ctDNA and sEV-associated DNA in mCRC patient management could provide a complete real-time assessment of the cancer mutation status.


2019 ◽  
Vol 10 (5) ◽  
pp. 831-840 ◽  
Author(s):  
Gerald Li ◽  
Dean Pavlick ◽  
Jon H. Chung ◽  
Todd Bauer ◽  
Bradford A. Tan ◽  
...  

2015 ◽  
Vol 26 (8) ◽  
pp. 1715-1722 ◽  
Author(s):  
J. Tie ◽  
I. Kinde ◽  
Y. Wang ◽  
H.L. Wong ◽  
J. Roebert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document