scholarly journals Accumulation of beneficial bacteria in the rhizosphere of maize (Zea mays L.) grown in a saline soil in responding to a consortium of plant growth promoting rhizobacteria

2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Jieli Peng ◽  
Jia Ma ◽  
Xiaoyan Wei ◽  
Cuimian Zhang ◽  
Nan Jia ◽  
...  

Abstract Purpose Salt stress reduces plant growth and is now becoming one of the most important factors restricting the agricultural productivity. Inoculation of plant growth-promoting rhizobacteria (PGPR) has been shown to confer plant tolerance against abiotic stress, but the detailed mechanisms of how this occurs remain unclear and the application effects in different reports are unstable. In order to obtain a favorite effect of PGPR inoculation and improve our knowledge about the related mechanism, we performed this study to analyze the mechanism of a PGPR consortium on improving the salt resistance of crops. Methods A region-specific (Saline land around Bohai Sea in China) PGPR consortium was selected that contains three strains (Pseudomonas sp. P8, Peribacillus sp. P10, and Streptomyces sp. X52) isolated from rhizosphere of Sonchus brachyotus DC. grown in a saline soil. By inoculation tests, their plant growth-promoting (PGP) traits and ability to improve the salt resistance of maize were investigated and shifting in rhizosphere bacterial community of the inoculated plants was analyzed using the high-throughput sequencing technology. Results The three selected strains were salt tolerant, presented several growth promoting properties, and inhibited several phytopathogenic fungi. The inoculation of this consortium promoted the growth of maize plant and enriched the beneficial bacteria in rhizosphere of maize in a saline soil, including the nitrogen fixing bacteria Azotobacter, Sinorhizobium, and Devosia, and the nitrification bacteria Candidatus Nitrososphaera, and Nitrosovibrio. Conclusions The bacterial consortium P8/P10/X52 could improve plant growth in a saline soil by both their PGP traits and regulating the rhizosphere bacterial community. The findings provided novel information about how the PGPR helped the plants in the view of microbiome.

2022 ◽  
Vol 170 ◽  
pp. 104297
Author(s):  
Jessica Aparecida Ferrarezi ◽  
Paula de Almeida Carvalho-Estrada ◽  
Bruna Durante Batista ◽  
Rafael Martins Aniceto ◽  
Bruno Augusto Prohmann Tschoeke ◽  
...  

2020 ◽  
Vol 66 (2) ◽  
pp. 144-160 ◽  
Author(s):  
Shahnaz Sultana ◽  
Sumonta C. Paul ◽  
Samia Parveen ◽  
Saiful Alam ◽  
Naziza Rahman ◽  
...  

Growth and productivity of rice are negatively affected by soil salinity. However, some salt-tolerant rhizosphere-inhabiting bacteria can improve salt resistance of plants, thereby augmenting plant growth and production. Here, we isolated a total of 53 plant-growth-promoting rhizobacteria (PGPR) from saline and non-saline areas in Bangladesh where electrical conductivity was measured as >7.45 and <1.80 dS/m, respectively. Bacteria isolated from saline areas were able to grow in a salt concentration of up to 2.60 mol/L, contrary to the isolates collected from non-saline areas that did not survive beyond 854 mmol/L. Among the salt-tolerant isolates, Bacillus aryabhattai, Achromobacter denitrificans, and Ochrobactrum intermedium, identified by comparing respective sequences of 16S rRNA using the NCBI GenBank, exhibited a higher amount of atmospheric nitrogen fixation, phosphate solubilization, and indoleacetic acid production at 200 mmol/L salt stress. Salt-tolerant isolates exhibited greater resistance to heavy metals and antibiotics, which could be due to the production of an exopolysaccharide layer outside the cell surface. Oryza sativa L. fertilized with B. aryabhattai MS3 and grown under 200 mmol/L salt stress was found to be favoured by enhanced expression of a set of at least four salt-responsive plant genes: BZ8, SOS1, GIG, and NHX1. Fertilization of rice with osmoprotectant-producing PGPR, therefore, could be a climate-change-preparedness strategy for coastal agriculture.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1960
Author(s):  
Yasser Nehela ◽  
Yasser S. A. Mazrou ◽  
Tarek Alshaal ◽  
Asmaa M. S. Rady ◽  
Ahmed M. A. El-Sherif ◽  
...  

The utilization of low-quality water or slightly saline water in sodic-saline soil is a major global conundrum that severely impacts agricultural productivity and sustainability, particularly in arid and semiarid regions with limited freshwater resources. Herein, we proposed an integrated amendment strategy for sodic-saline soil using biochar and/or plant growth-promoting rhizobacteria (PGPR; Azotobacter chroococcum SARS 10 and Pseudomonas koreensis MG209738) to alleviate the adverse impacts of saline water on the growth, physiology, and productivity of maize (Zea mays L.), as well as the soil properties and nutrient uptake during two successive seasons (2018 and 2019). Our field experiments revealed that the combined application of PGPR and biochar (PGPR + biochar) significantly improved the soil ecosystem and physicochemical properties and K+, Ca2+, and Mg2+ contents but reduced the soil exchangeable sodium percentage and Na+ content. Likewise, it significantly increased the activity of soil urease (158.14 ± 2.37 and 165.51 ± 3.05 mg NH4+ g−1 dry soil d−1) and dehydrogenase (117.89 ± 1.86 and 121.44 ± 1.00 mg TPF g−1 dry soil d−1) in 2018 and 2019, respectively, upon irrigation with saline water compared with non-treated control. PGPR + biochar supplementation mitigated the hazardous impacts of saline water on maize plants grown in sodic-saline soil better than biochar or PGPR individually (PGPR + biochar > biochar > PGPR). The highest values of leaf area index, total chlorophyll, carotenoids, total soluble sugar (TSS), relative water content, K+ and K+/Na+ of maize plants corresponded to PGPR + biochar treatment. These findings could be guidelines for cultivating not only maize but other cereal crops particularly in salt-affected soil and sodic-saline soil.


2021 ◽  
Author(s):  
Jia-Qi Liu ◽  
Chun-Mei Zhang ◽  
Yuan Gong ◽  
Ming-Jie Xu ◽  
Ke Xing ◽  
...  

Abstract Purpose Arctium lappa L. is one of the medicinal and food homologous plants in China, which is rich in nutrients and medicinal ingredients. The use of plant growth promoting (PGP) endophytic bacteria is a useful alternative in agricultural production to reduce the use of chemical fertilizers. The aim of this study was to analysis the diversity of endophytic bacteria in different cultivars of A. lappa L. collected from two different geographical locations in China and evaluate PGP traits of the isolates and their potential PGP ability in greenhouse condition. Methods Endophytic bacterial community was investigated by culture-dependent and culture-independent methods. Isolates were screened and investigated for multiple PGP traits, and representative strains were inoculated host seedlings to evaluate the growth promoting effect. Results A total of 348 endophytic bacteria were obtained and they distributed into four phyla, 30 genera and 73 different species. In addition, high throughput sequencing revealed more abundant bacterial community, including 17 bacterial phyla, and 207 different known genera. A high proportion of PGP traits were detected, including production of indole acetic acid, siderophore, ammonia and phosphate solubilization. Four representative strains with multiple PGP traits of the most prevalent genera were further selected for host inoculation and growth promoting evaluation, and they significantly increase seedlings length, root length and fresh weight. Conclusion This study demonstrated that A. lappa L. harbors abundant endophytic bacteria, and plant genotype and geographical origin affect their composition. Moreover, some endophytic bacteria showed good potential for the development of microbial fertilizer in the future.


2009 ◽  
Vol 47 (4) ◽  
pp. 363-370 ◽  
Author(s):  
Juliana Mendes Monteiro ◽  
Renata Estebanez Vollú ◽  
Marcia Reed Rodrigues Coelho ◽  
Celuta Sales Alviano ◽  
Arie Fitzgerald Blank ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document