Isolation and identification of salt-tolerant plant-growth-promoting rhizobacteria and their application for rice cultivation under salt stress

2020 ◽  
Vol 66 (2) ◽  
pp. 144-160 ◽  
Author(s):  
Shahnaz Sultana ◽  
Sumonta C. Paul ◽  
Samia Parveen ◽  
Saiful Alam ◽  
Naziza Rahman ◽  
...  

Growth and productivity of rice are negatively affected by soil salinity. However, some salt-tolerant rhizosphere-inhabiting bacteria can improve salt resistance of plants, thereby augmenting plant growth and production. Here, we isolated a total of 53 plant-growth-promoting rhizobacteria (PGPR) from saline and non-saline areas in Bangladesh where electrical conductivity was measured as >7.45 and <1.80 dS/m, respectively. Bacteria isolated from saline areas were able to grow in a salt concentration of up to 2.60 mol/L, contrary to the isolates collected from non-saline areas that did not survive beyond 854 mmol/L. Among the salt-tolerant isolates, Bacillus aryabhattai, Achromobacter denitrificans, and Ochrobactrum intermedium, identified by comparing respective sequences of 16S rRNA using the NCBI GenBank, exhibited a higher amount of atmospheric nitrogen fixation, phosphate solubilization, and indoleacetic acid production at 200 mmol/L salt stress. Salt-tolerant isolates exhibited greater resistance to heavy metals and antibiotics, which could be due to the production of an exopolysaccharide layer outside the cell surface. Oryza sativa L. fertilized with B. aryabhattai MS3 and grown under 200 mmol/L salt stress was found to be favoured by enhanced expression of a set of at least four salt-responsive plant genes: BZ8, SOS1, GIG, and NHX1. Fertilization of rice with osmoprotectant-producing PGPR, therefore, could be a climate-change-preparedness strategy for coastal agriculture.

2017 ◽  
Vol 57 (2) ◽  
pp. 144-151 ◽  
Author(s):  
Arun Karnwal

AbstractThe use of plant growth promoting rhizobacteria is increasing in agriculture and gives an appealing manner to replace chemical fertilizers, pesticides, and dietary supplements. The objective of our research was to access the plant growth promotion traits ofPseudomonas aeruginosa,P. fluorescensandBacillus subtilisisolated from the maize (Zea maysL.) rhizosphere.In vitrostudies showed that isolates have the potential to produce indole acetic acid (IAA), hydrogen cyanide, phosphate solubilisation, and siderophore. RNA analysis revealed that two isolates were 97% identical toP. aeruginosastrain DSM 50071 andP. aeruginosastrain NBRC 12689 (AK20 and AK31), while two others were 98% identical toP. fluorescensstrain ATCC 13525,P. fluorescensstrain IAM 12022 (AK18 and AK45) and one other was 99% identical toB. subtilisstrain NCDO 1769 (AK38). Our gnotobiotic study showed significant differences in plant growth variables under control and inoculated conditions. In the present research, it was observed that the isolated strains had good plant growth promoting effects on rice.


2019 ◽  
Vol 17 (1) ◽  
pp. e0801 ◽  
Author(s):  
Mitra Azadikhah ◽  
Fatemeh Jamali ◽  
Hamid-Reza Nooryazdan ◽  
Fereshteh Bayat

Plant growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme reduce the level of stress, ethylene and stimulate plant growth under various biotic and abiotic stress conditions. The present study aims at characterizing efficient salt-tolerant, ACC deaminase containing Pseudomonas fluorescens strains with plant growth-promoting activity isolated from the rhizosphere of barley plants and evaluating the influence of potent plant growth-promoting rhizobacteria (PGPR) isolates on growth and yield of five barley cultivars under salinity stress. Plant growth and yield in barley cultivars following inoculation with salt-tolerant, ACC deaminase producing PGPR strains under salt stress were quantified. Results indicated that under various levels of salinity (50, 100 and 150 mM NaCl) inoculation with PGPRs had positive impact on growth parameters and yield of barley cultivars including plant height, spike length, weight and number, peduncle length, number of grains per spike, 1000-grain weight and grain yield, comparing to uninoculated control plants under salinity stress. Inoculation of barley cultivars with bacteria ameliorated the negative effects of salinity and resulted in increase in growth and yield. Besides, as the salinity levels increased, growth and yield of barley cultivars decreased; however, cultivars showed different responses to salt stress. This study demonstrates the vital role of rhizobacteria containing ACC deaminase for increasing salt tolerance and consequently improving the growth and yield of barley plants under salinity stress.


2020 ◽  
Vol 52 (4) ◽  
Author(s):  
Muhammad Zafar-Ul-Hye ◽  
Fiza Mahmood ◽  
Subhan Danish ◽  
Shahid Hussain ◽  
Mehreen Gul ◽  
...  

2021 ◽  
Vol 11 (3) ◽  
pp. 295-301
Author(s):  
Leslie Velarde-Apaza ◽  
Issaak Vásquez-Romero ◽  
Joao De Souza-Pacheco ◽  
Richard Solórzano-Acosta ◽  
Guido Sarmiento-Sarmiento

2021 ◽  
Vol 12 ◽  
Author(s):  
Pu-Sheng Li ◽  
Wei-Liang Kong ◽  
Xiao-Qin Wu ◽  
Yu Zhang

Salt stress is one of the major abiotic stresses that affects plant growth and development. The use of plant growth-promoting rhizobacteria to mitigcate salt stress damage in plants is an important way to promote crop growth under salt stress conditions. Rahnella aquatilis JZ-GX1 is a plant growth-promoting rhizobacterial strain, but it is not clear whether it can improve the salt tolerance of plants, and in particular, the role of volatile substances in plant salt tolerance is unknown. We investigated the effects of volatile organic compounds (VOCs) from JZ-GX1 on the growth performance, osmotic substances, ionic balance and antioxidant enzyme activities of acacia seedlings treated with 0 and 100mm NaCl and explored the VOCs associated with the JZ-GX1 strain. The results showed that compared to untreated seedlings, seedlings exposed to plant growth-promoting rhizobacterium JZ-GX1 via direct contact with plant roots under salt stress conditions exhibited increases in fresh weight, lateral root number and primary root length equal to approximately 155.1, 95.4, and 71.3%, respectively. Robinia pseudoacacia seedlings exposed to VOCs of the JZ-GX1 strain showed increases in biomass, soil and plant analyser development values and lateral root numbers equal to 132.1, 101.6, and 166.7%, respectively. Additionally, decreases in malondialdehyde, superoxide anion (O2−) and hydrogen peroxide (H2O2) contents and increases in proline contents and superoxide dismutase, peroxidase and glutathione reductase activities were observed in acacia leaves. Importantly, the sodium-potassium ratios in the roots, stems, and leaves of acacia exposed to VOCs of the JZ-GX1 strain were significantly lower than those in the control samples, and this change in ion homeostasis was consistent with the upregulated expression of the (Na+, K+)/H+ reverse cotransporter RpNHX1 in plant roots. Through GC-MS and creatine chromatography, we also found that 2,3-butanediol in the volatile gases of the JZ-GX1 strain was one of the important signaling substances for improving the salt tolerance of plants. The results showed that R. aquatilis JZ-GX1 can promote the growth and yield of R. pseudoacacia under normal and salt stress conditions. JZ-GX1 VOCs have good potential as protectants for improving the salt tolerance of plants, opening a window of opportunity for their application in salinized soils.


Author(s):  
Md. Shoaib Arifin ◽  
Md. Shafiul Islam Rion ◽  
Atiqur Rahman ◽  
H. M. Zakir ◽  
Quazi Forhad Quadir

Plant growth-promoting rhizobacteria can effectively reduce the severity of different abiotic stresses like water stress, temperature stress, salt stress, etc. on plant growth and development. The study aimed at isolating salt-tolerant rhizobacteria followed by their morphological, biochemical and plant growth promotion traits evaluation. Sixteen root samples of nine different plant species were collected from two locations of Patuakhali, a coastal southern district of Bangladesh. Thirty rhizobacteria were isolated, fifteen from each location, to assess their halotolerance and plant growth promoting potential. The isolated rhizobacteria were subjected to morphological (viz. shape, colour and elevation), biochemical (viz. Gram reaction, catalase test and HCN production) and growth-promoting traits [viz. phosphate solubilizing ability, salt tolerance, indole-3-acetic acid (IAA) production, and N2-fixation] characterization. Twenty-eight isolates were Gram positive, 27 were catalase positive, and nine showed varying degrees of phosphate solubilization on National Botanical Research Institute of Phosphate (NBRIP) medium. Isolate PWB5 showed the highest phosphate solubilizing index (PSI = 3.83±0.098) on the 6th day. To screen salt-tolerant rhizobacteria, the isolates were cultured in NBA media containing different (0%, 2.5%, 5%, 7.5%, 10%, 12%, 15%) NaCl concentrations. Isolate PWB12 and PWB13 grew at 15% NaCl concentration. Eleven isolates exhibited IAA producing ability on Winogradsky medium amended with L-tryptophan among which four (PMB13, PMB14, PMB15 and PWB6) were strong IAA producers. Twenty-seven isolates were potential N2-fixer and among them, 20 were highly efficient, but none of the isolates was HCN producer. The rhizobacteria isolated in the current research work showed some potential plant growth-promoting traits which seem applicable for crop production, especially, under salt stress condition.


Sign in / Sign up

Export Citation Format

Share Document