scholarly journals Exosomes derived from mesenchymal stem cells reverse EMT via TGF-β1/Smad pathway and promote repair of damaged endometrium

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yuan Yao ◽  
Ran Chen ◽  
Guowu Wang ◽  
Yu Zhang ◽  
Fang Liu
2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Zetao Chen ◽  
Yihong Chen ◽  
Yan Li ◽  
Weidong Lian ◽  
Kehong Zheng ◽  
...  

AbstractGlioma is one of the most lethal cancers with highly vascularized networks and growing evidences have identified glioma stem cells (GSCs) to account for excessive angiogenesis in glioma. Aberrant expression of paired-related homeobox1 (Prrx1) has been functionally associated with cancer stem cells including GSCs. In this study, Prrx1 was found to be markedly upregulated in glioma specimens and elevated Prrx1 expression was inversely correlated with prognosis of glioma patients. Prrx1 potentiated stemness acquisition in non-stem tumor cells (NSTCs) and stemness maintenance in GSCs, accompanied with increased expression of stemness markers such as SOX2. Prrx1 also promoted glioma angiogenesis by upregulating proangiogenic factors such as VEGF. Consistently, silencing Prrx1 markedly inhibited glioma proliferation, stemness, and angiogenesis in vivo. Using a combination of subcellular proteomics and in vitro analyses, we revealed that Prrx1 directly bound to the promoter regions of TGF-β1 gene, upregulated TGF-β1 expression, and ultimately activated the TGF-β/smad pathway. Silencing TGF-β1 mitigated the malignant behaviors induced by Prrx1. Activation of this pathway cooperates with Prrx1 to upregulate the expression of stemness-related genes and proangiogenic factors. In summary, our findings revealed that Prrx1/TGF-β/smad signal axis exerted a critical role in glioma stemness and angiogeneis. Disrupting the function of this signal axis might represent a new therapeutic strategy in glioma patients.


Gland Surgery ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 1046-1056
Author(s):  
Zhi-Yuan Wu ◽  
Hui-Jun Zhang ◽  
Zhi-Hong Zhou ◽  
Zhan-Peng Li ◽  
Si-Mu Liao ◽  
...  

2013 ◽  
Vol 84 (2) ◽  
pp. 297-307 ◽  
Author(s):  
Toshinori Ueno ◽  
Ayumu Nakashima ◽  
Shigehiro Doi ◽  
Takeshi Kawamoto ◽  
Kiyomasa Honda ◽  
...  

2020 ◽  
Author(s):  
Guanyin Chen ◽  
wangqian zhang ◽  
Jintao Gu ◽  
Yuan Gao ◽  
Lei He ◽  
...  

Abstract Background: Tendon injury is a common but tough medical problem. Unsatisfactory clinical results have been reported in tendon repair using mesenchymal stem cells (MSCs) therapy, creating a need for a better strategy to induce MSCs to tenogenic differentiation. This study was designed to investigate the role of hypoxia in the tenogenic differentiation of MSCs in vitro and in vivo and to compare the tenogenic differentiation capacities of different MSCs under hypoxia condition in vitro. Methods: Adipose tissue-derived MSCs (AMSCs) and bone marrow-derived MSCs (BMSCs) were isolated and characterized by the expression of MSC-specific markers and tri-lineage differentiation. The expression of hypoxia induced factor-1 alpha (Hif-1α) and the proliferation of AMSCs and BMSCs were examined in order to confirm the establishment of hypoxia condition. qRT-PCR, western blot, and immunofluorescence staining were used to evaluate the expression of tendon-associated marker Col-1a1, Col-3a1, Dcn, and Tnmd in AMSCs and BMSCs under hypoxia and/or Tgf-β1 condition. In vivo, a patellar tendon injury model was established. Normoxic and hypoxic BMSCs were cultured and implanted. Histological, biomechanical and transmission electron microscopy analyses were performed to assess the improved healing effect of hypoxic BMSCs on tendon injury. Results: Hypoxia remarkably increased the expression of Hif-1α and the proliferation of AMSCs and BMSCs. Our in vitro results detected that hypoxia not only promoted a significant increase in tenogenic markers in both AMSCs and BMSCs compared with the normoxia group, but also showed higher inductility compared with Tgf-β1. In addition, hypoxic BMSCs exhibited higher potential of tenogenic differentiation than hypoxic AMSCs. Our in vivo results demonstrated that hypoxic BMSCs possessed better histological and biomechanical properties than those of normoxic BMSCs, as evidenced by histological scores, quantitative analysis of immunohistochemical staining for Col-1a1 and Tnmd, the range and average of collagen fibril diameters and patellar tendon biomechanical tests. Conclusions: These findings suggested that hypoxia may be a practical and reliable strategy to induce tenogenic differentiation of BMSCs for tendon repair and could enhance the effectiveness of MSCs therapy in treating tendon injury.


Sign in / Sign up

Export Citation Format

Share Document