Hypoxia promotes tenocyte differentiation of mesenchymal stem cells

2020 ◽  
Author(s):  
Guanyin Chen ◽  
wangqian zhang ◽  
Jintao Gu ◽  
Yuan Gao ◽  
Lei He ◽  
...  

Abstract Background: Tendon injury is a common but tough medical problem. Unsatisfactory clinical results have been reported in tendon repair using mesenchymal stem cells (MSCs) therapy, creating a need for a better strategy to induce MSCs to tenogenic differentiation. This study was designed to investigate the role of hypoxia in the tenogenic differentiation of MSCs in vitro and in vivo and to compare the tenogenic differentiation capacities of different MSCs under hypoxia condition in vitro. Methods: Adipose tissue-derived MSCs (AMSCs) and bone marrow-derived MSCs (BMSCs) were isolated and characterized by the expression of MSC-specific markers and tri-lineage differentiation. The expression of hypoxia induced factor-1 alpha (Hif-1α) and the proliferation of AMSCs and BMSCs were examined in order to confirm the establishment of hypoxia condition. qRT-PCR, western blot, and immunofluorescence staining were used to evaluate the expression of tendon-associated marker Col-1a1, Col-3a1, Dcn, and Tnmd in AMSCs and BMSCs under hypoxia and/or Tgf-β1 condition. In vivo, a patellar tendon injury model was established. Normoxic and hypoxic BMSCs were cultured and implanted. Histological, biomechanical and transmission electron microscopy analyses were performed to assess the improved healing effect of hypoxic BMSCs on tendon injury. Results: Hypoxia remarkably increased the expression of Hif-1α and the proliferation of AMSCs and BMSCs. Our in vitro results detected that hypoxia not only promoted a significant increase in tenogenic markers in both AMSCs and BMSCs compared with the normoxia group, but also showed higher inductility compared with Tgf-β1. In addition, hypoxic BMSCs exhibited higher potential of tenogenic differentiation than hypoxic AMSCs. Our in vivo results demonstrated that hypoxic BMSCs possessed better histological and biomechanical properties than those of normoxic BMSCs, as evidenced by histological scores, quantitative analysis of immunohistochemical staining for Col-1a1 and Tnmd, the range and average of collagen fibril diameters and patellar tendon biomechanical tests. Conclusions: These findings suggested that hypoxia may be a practical and reliable strategy to induce tenogenic differentiation of BMSCs for tendon repair and could enhance the effectiveness of MSCs therapy in treating tendon injury.

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Guanyin Chen ◽  
Wangqian Zhang ◽  
Kuo Zhang ◽  
Shuning Wang ◽  
Yuan Gao ◽  
...  

Tendon injury is a common but tough medical problem. Unsatisfactory clinical results have been reported in tendon repair using mesenchymal stem cell (MSC) therapy, creating a need for a better strategy to induce MSCs to tenogenic differentiation. This study was designed to examine the effect of hypoxia on the tenogenic differentiation of different MSCs and their tenogenic differentiation capacities under hypoxia condition in vitro and to investigate the in vivo inductility of hypoxia in tenogenesis. Adipose tissue-derived MSCs (AMSCs) and bone marrow-derived MSCs (BMSCs) were isolated and characterized. The expression of hypoxia-induced factor-1 alpha (Hif-1α) was examined to confirm the establishment of hypoxia condition. qRT-PCR, western blot, and immunofluorescence staining were used to evaluate the expression of tendon-associated marker Col-1a1, Col-3a1, Dcn, and Tnmd in AMSCs and BMSCs under hypoxia condition, compared with Tgf-β1 induction. In vivo, a patellar tendon injury model was established. Normoxic and hypoxic BMSCs were cultured and implanted. Histological, biomechanical, and transmission electron microscopy analyses were performed to assess the improved healing effect of hypoxic BMSCs on tendon injury. Our in vitro results showed that hypoxia remarkably increased the expression of Hif-1α and that hypoxia not only promoted a significant increase in tenogenic markers in both AMSCs and BMSCs compared with the normoxia group but also showed higher inductility compared with Tgf-β1. In addition, hypoxic BMSCs exhibited higher potential of tenogenic differentiation than hypoxic AMSCs. Our in vivo results demonstrated that hypoxic BMSCs possessed better histological and biomechanical properties than normoxic BMSCs, as evidenced by histological scores, patellar tendon biomechanical parameters, and the range and average of collagen fibril diameters. These findings suggested that hypoxia may be a practical and reliable strategy to induce tenogenic differentiation of BMSCs for tendon repair and could enhance the effectiveness of MSCs therapy in treating tendon injury.


2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0030
Author(s):  
Seung Yeol Lee ◽  
Hyang Kim ◽  
Kyoung Min Lee

Category: Basic Sciences/Biologics Introduction/Purpose: Tendon repair has been a challenging issue for surgeons in treating. Although tissue engineering with mesenchymal stem cells (MSC) have been used for tendon repair in both in vivo and in vitro, the stem cells are obtained through invasive procedures, and there is usually a lack of adequate numbers for clinical use. The purpose of this study was to compare the potential of tri-lineage differentiation and to investigate the potential of tenogenic differentiation of human tonsil derived MSCs (T-MSCs), bone marrow derived MSCs (BM-MSCs), and adipose tissue derived MSCs (AD-MSCs). Methods: Each tissue was obtained from 8 patients. After isolation of MSCs, flow cytometry analysis was used to characterize the phenotypes of the MSCs. Differentiation capacity to adipo-, osteo-, and chondrocytes were induced by culturing each MSCs for 3 weeks in commercially available media. Each MSCs was treated with 5ng/ml and 10ng/ml of TGF-ß3 with vehicle control. Results: Immunophenotypic surface marker analysis of BM-MSC, AD-MSC, and TMSCs revealed that these MSCs expressed a typical MSCs. mRNA expression levels of the markers for tri-lineage differentiation were significantly lower in TMSC than other MSCs. The tenogenic transcription factor, scleraxis, showed a statistically significant increase in all MSCs differentiation groups except for the 7th day TMSC differentiation group (Figure). Gene expression of tenascin-C, an ECM glycoprotein, was specifically expressed in the T-MSC differentiation group at 14 days (Figure). Comparing the ratio of collagen 1 to collagen 3 genes, the BM-MSC showed a decrease in the ratio on days 3 and 7 unlike AD-MSCs and TMSCs. Only TMSC showed a significant increase in the ratio compared with other MSCs on the 14th day. Conclusion: The tonsil-MSC has low fat, bone and cartilage differentiation potential and has excellent tendon-specific differentiation potential, thus being highly useful as a tendon-tailored cell therapy agent.


2014 ◽  
Vol 33 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Koji Otabe ◽  
Hiroyuki Nakahara ◽  
Akihiko Hasegawa ◽  
Tetsuya Matsukawa ◽  
Fumiaki Ayabe ◽  
...  

2020 ◽  
Author(s):  
Yang Yu ◽  
Wen-tao Zhang ◽  
Fu-han Yang ◽  
Ya-dong Guo ◽  
Lin Ye ◽  
...  

Abstract Background: Mesenchymal stem cells (MSCs) have been proved to accelerate prostate cancer (PCa) castration resistance progression. The purpose of this study is to investigate the contribution of MSCs to the development of docetaxel resistance in castration-resistant prostate cancer (CRPC) cells and its potential mechanisms.Methods: The effect of MSCs on CRPC cells resistance to docetaxel was determined using in-vivo and in-vitro approaches. CCK8 and PI/Annexin V-FITC assay were used to examined the cell viability and apoptosis. The concentration of transforming growth factor-β1 was measured by enzyme-linked immunosorbent assay and small interfering RNA was used for functional analyses.Results: MSCs significantly reduced the sensitivity of CRPC cells to docetaxel-induced proliferation inhibition and apoptosis promotion in vivo and in vitro. CRPC cells cocultured with MSCs under docetaxel administration have an increased autophagy activation, while autophagy inhibitor could effectively reversed MSCs-induced resistance to docetaxel. Additionally, MSCs-induced CRPC cell autophagy increase under docetaxel administration depends on MSCs secreting TGF-β1 and inhibition of TGF-β1 secretion in MSCs could consequently increase the sensitivity of CRPC cells to docetaxel.Conclusions: These results suggest that docetaxel administrated CRPC cells may elicit MSCs secreting TGF-β1 increase, which desensitizes CRPC to docetaxel chemotherapy accelerating chemoresistance occurrence via inducing cell autophagy.


2014 ◽  
Vol 86 (12) ◽  
pp. 1885-1895 ◽  
Author(s):  
Feifei Li ◽  
Lie Ma ◽  
Bo Li ◽  
Changyou Gao

Abstract Transform growth factor-β1 (TGF-β1) is an extremely powerful protein to induce the chondrogenesis of mesenchymal stem cells (MSCs) both in vitro and in vivo. However, due to the short-life of TGF-β1, the direct application of TGF-β1 may deteriorate its bioactivity and thereby the repair effect. In this study, uniform sulfated chitosan microspheres (SCMs) with a mean diameter of ∼ 2 μm were fabricated by membrane emulsification as a carrier for TGF-β1. The in vitro release study showed that TGF-β1 could be sustainedly released from the microspheres up to 16 days. Under the protection of SCMs, about 13 % TGF-β1 was preserved even after stored for 14 days. The microspheres cytotoxicity was evaluated by coculture of MSCs with different concentrations SCMs and no obvious deterioration of cell viability was observed when the concentration of SCMs is lower than 2 μg/1.0 × 104 cells. In comparison with the blank group, the addition of TGF-β1 either in free state or loaded in SCMs inhibited the proliferation trend of MSCs. Quantitative analysis of GAGs production and genes expression of COL II and aggrecan by qRT-PCR revealed that enhanced bioactivity of TGF-β1 was obtained in the group of TGF-β1/SCMs, indicating that SCMs could be functioned as a promising carrier of TGF-β1 for the in vitro chondrogenesis of MSCs.


2020 ◽  
Author(s):  
Yang Yu ◽  
Wen-tao Zhang ◽  
Fu-han Yang ◽  
Ya-dong Guo ◽  
Lin Ye ◽  
...  

Abstract Background: Mesenchymal stem cells (MSCs) have been proved to accelerate prostate cancer (PCa) castration resistance progression. The purpose of this study is to investigate the contribution of MSCs to the development of docetaxel resistance in castration-resistant prostate cancer (CRPC) cells and its potential mechanisms. Methods: The effect of MSCs on CRPC cells resistance to docetaxel was determined using in-vivo and in-vitro approaches. CCK8 and PI/Annexin V-FITC assay were used to examined the cell viability and apoptosis. The concentration of transforming growth factor-β1 was measured by enzyme-linked immunosorbent assay and small interfering RNA was used for functional analyses. Results: MSCs significantly reduced the sensitivity of CRPC cells to docetaxel-induced proliferation inhibition and apoptosis promotion in vivo and in vitro. CRPC cells cocultured with MSCs under docetaxel administration have an increased autophagy activation, while autophagy inhibitor could effectively reversed MSCs-induced resistance to docetaxel. Additionally, MSCs-induced CRPC cell autophagy increase under docetaxel administration depends on MSCs secreting TGF-β1 and inhibition of TGF-β1 secretion in MSCs could consequently increase the sensitivity of CRPC cells to docetaxel. Conclusions: These results suggest that docetaxel administrated CRPC cells may elicit MSCs secreting TGF-β1 increase, which desensitizes CRPC to docetaxel chemotherapy accelerating chemoresistance occurrence via inducing cell autophagy.


2021 ◽  
Author(s):  
Guanyin Chen ◽  
Dong Fan ◽  
Wangqian Zhang ◽  
Shuning Wang ◽  
Jintao Gu ◽  
...  

Abstract Background: Hypoxia has been shown to be able to induce tenogenic differentiation of mesenchymal stem cells (MSCs) which lead hypoxia-induced MSCs to be a potential treatment for tendon injury. However, little is known about the mechanism underlying the tenogenic differentiation process of hypoxic MSCs, which limited the application of differentiation-inducing therapies in tendon repair. This study was designed to investigate the role of Mohawk homeobox (Mkx) in tenogenic differentiation and proliferation of hypoxic MSCs.Methods: Adipose-derived MSCs (AMSCs) and bone marrow-derived MSCs (BMSCs) were isolated, identified and cultured as our previous study. qRT-PCR, western blot, and immunofluorescence staining were performed to evaluate the expression of Mkx and other tendon-associated markers in AMSCs and BMSCs under hypoxia condition. Small interfering RNA technique was applied to observe the effect of Mkx levels on the expression of tendon-associated markers in normoxic and hypoxic BMSCs. Hypoxic BMSCs infected with Mkx-specific short hair RNA (shRNA) or scramble were implanted into the wound gaps of injured patellar tendons to assess the effect of Mkx levels on tendon repair. In addition, cell counting kit‑8 and colony formation unit assays were adopted to determine the proliferation capacity of normoxic or hypoxic BMSCs infected with or without Mkx-specific shRNA.Results: Our data showed that the expression of Mkx significantly increased in hypoxic AMSCs, and increased much more in hypoxic BMSCs. Our results also detected that the expression of tenogenic differentiation markers after down-regulation of Mkx were significantly decreased not only in normoxic BMSCs, but also in hypoxic BMSCs which paralleled the inferior histological evidences, worse biomechanical properties and smaller diameters of collagen fibrils in vivo. In addition, our in vitro data demonstrated that the optical density values and the clone numbers of both normoxic and hypoxic BMSCs were significantly increased after knockdown of Mkx, and were also significantly enhanced in both AMSCs and BMSCs in hypoxia condition under which the expression of Mkx was up-regulated.Conclusions: These findings strongly suggested that Mkx mediated hypoxia-induced tenogenic differentiation of MSCs, but could not completely repress the proliferation of hypoxic MSCs.


2019 ◽  
Vol 20 (12) ◽  
pp. 3002 ◽  
Author(s):  
Raquel Costa-Almeida ◽  
Isabel Calejo ◽  
Manuela E. Gomes

Tendon tissues have limited healing capacity. The incidence of tendon injuries and the unsatisfactory functional outcomes of tendon repair are driving the search for alternative therapeutic approaches envisioning tendon regeneration. Cellular therapies aim at delivering adequate, regeneration-competent cell types to the injured tendon and toward ultimately promoting its reconstruction and recovery of functionality. Mesenchymal stem cells (MSCs) either obtained from tendons or from non-tendon sources, like bone marrow (BM-MSCs) or adipose tissue (ASCs), have been receiving increasing attention over the years toward enhancing tendon healing. Evidences from in vitro and in vivo studies suggest MSCs can contribute to accelerate and improve the quality of tendon healing. Nonetheless, the exact mechanisms underlying these repair events are yet to be fully elucidated. This review provides an overview of the main challenges in the field of cell-based regenerative therapies, discussing the role of MSCs in boosting tendon regeneration, particularly through their capacity to enhance the tenogenic properties of tendon resident cells.


2019 ◽  
Vol 41 (2) ◽  
pp. 182-193 ◽  
Author(s):  
Huijuan Tang ◽  
Yijing Chu ◽  
Zaiju Huang ◽  
Jing Cai ◽  
Zehua Wang

Abstract Ovarian cancer metastasizes to organs in the abdominal cavity, such as the omentum that is a rich source of adipose-derived mesenchymal stem cells (ADSCs). In present, ADSCs have received more and more attention for their roles in the development of cancer. In this study, we examined α-smooth muscle actin (α-SMA) expression and carcinoma-associated fibroblast (CAF)-like differentiation capabilities in ADSCs from omentum of different patients. The effects of ADSCs on the proliferation and invasion of epithelial ovarian cancer cells (EOCCs) were also assessed in vitro and in vivo. Our results showed that ADSCs from omentum of ovarian cancer patients, no matter whether metastasis or not, expressed higher levels of α-SMA than ADSCs from patients with benign gynecologic disease. Using direct and indirect co-culture system, we found that EOCCs induced ADSCs to express CAF markers, including α-SMA and fibroblast activation protein, via the transforming growth factor beta 1 (TGF-β1) signaling pathway. Moreover, co-cultured ADSCs exhibited functional properties similar to those of CAFs, including the ability to promote EOCCs proliferation, progression and metastasis both in vitro and in vivo. Furthermore, blocking the TGF-β1 pathway can counteract the CAF-like differentiation and tumor promotion effect of ADSCs. Our results suggest that ADSCs are a source of CAFs and that they participate in the interaction between EOCCs and the omental microenvironment. EOCCs could induce ADSCs in the omentum to differentiate before ovarian cancer metastasis, which participate in the formation of omental metastatic niches and promote the proliferation and invasion of ovarian cancer.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guanyin Chen ◽  
Dong Fan ◽  
Wangqian Zhang ◽  
Shuning Wang ◽  
Jintao Gu ◽  
...  

Abstract Background Hypoxia has been shown to be able to induce tenogenic differentiation and proliferation of mesenchymal stem cells (MSCs) which lead hypoxia-induced MSCs to be a potential treatment for tendon injury. However, little is known about the mechanism underlying the tenogenic differentiation and proliferation process of hypoxic MSCs, which limited the application of differentiation-inducing therapies in tendon repair. This study was designed to investigate the role of Mohawk homeobox (Mkx) in tenogenic differentiation and proliferation of hypoxic MSCs. Methods qRT-PCR, western blot, and immunofluorescence staining were performed to evaluate the expression of Mkx and other tendon-associated markers in adipose-derived MSCs (AMSCs) and bone marrow-derived MSCs (BMSCs) under hypoxia condition. Small interfering RNA technique was applied to observe the effect of Mkx levels on the expression of tendon-associated markers in normoxic and hypoxic BMSCs. Hypoxic BMSCs infected with Mkx-specific short hair RNA (shRNA) or scramble were implanted into the wound gaps of injured patellar tendons to assess the effect of Mkx levels on tendon repair. In addition, cell counting kit-8 assay, colony formation unit assay, cell cycle analysis, and EdU assay were adopted to determine the proliferation capacity of normoxic or hypoxic BMSCs infected with or without Mkx-specific shRNA. Results Our data showed that the expression of Mkx significantly increased in hypoxic AMSCs and increased much higher in hypoxic BMSCs. Our results also detected that the expression of tenogenic differentiation markers after downregulation of Mkx were significantly decreased not only in normoxic BMSCs, but also in hypoxic BMSCs which paralleled the inferior histological evidences, worse biomechanical properties, and smaller diameters of collagen fibrils in vivo. In addition, our in vitro data demonstrated that the optical density values, the clone numbers, the percentage of cells in S phage, and cell proliferation potential of both normoxic and hypoxic BMSCs were all significantly increased after knockdown of Mkx and were also significantly enhanced in both AMSCs and BMSCs in hypoxia condition under which the expression of Mkx was upregulated. Conclusions These findings strongly suggested that Mkx mediated hypoxia-induced tenogenic differentiation of MSCs but could not completely repress the proliferation of hypoxic MSCs.


Sign in / Sign up

Export Citation Format

Share Document