scholarly journals Accuracy in dosimetry of diagnostic agents: impact of the number of source tissues used in whole organ S value-based calculations

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anders Josefsson ◽  
Klaikangwol Siritantikorn ◽  
Sagar Ranka ◽  
Jose Willegaignon de Amorim de Carvalho ◽  
Carlos Alberto Buchpiguel ◽  
...  
Keyword(s):  
2020 ◽  
Vol 26 (33) ◽  
pp. 4174-4184
Author(s):  
Marina P. Abuçafy ◽  
Bruna L. da Silva ◽  
João A. Oshiro-Junior ◽  
Eloisa B. Manaia ◽  
Bruna G. Chiari-Andréo ◽  
...  

Nanoparticles as drug delivery systems and diagnostic agents have gained much attention in recent years, especially for cancer treatment. Nanocarriers improve the therapeutic efficiency and bioavailability of antitumor drugs, besides providing preferential accumulation at the target site. Among different types of nanocarriers for drug delivery assays, metal-organic frameworks (MOFs) have attracted increasing interest in the academic community. MOFs are an emerging class of coordination polymers constructed of metal nodes or clusters and organic linkers that show the capacity to combine a porous structure with high drug loading through distinct kinds of interactions, overcoming the limitations of traditional drug carriers explored up to date. Despite the rational design and synthesis of MOFs, structural aspects and some applications of these materials like gas adsorption have already been comprehensively described in recent years; it is time to demonstrate their potential applications in biomedicine. In this context, MOFs can be used as drug delivery systems and theranostic platforms due to their ability to release drugs and accommodate imaging agents. This review describes the intrinsic characteristics of nanocarriers used in cancer therapy and highlights the latest advances in MOFs as anticancer drug delivery systems and diagnostic agents.


2020 ◽  
Vol 22 (1) ◽  
pp. 123-135 ◽  
Author(s):  
Yalda Khazaei-poul ◽  
Shohreh Farhadi ◽  
Sepideh Ghani ◽  
Safar Ali Ahmadizad ◽  
Javad Ranjbari

: Peptides are considered to be appropriate tools in various biological fields. They can be primarily used for the rational design of bioactive molecules. They can act as ligands in the development of targeted therapeutics as well as diagnostics, can be used in the design of vaccines or can be employed in agriculture. Peptides can be classified in two broad structural classes: linear and cyclic peptides. Monocyclic peptides are a class of polypeptides with one macrocyclic ring that bears advantages, such as more selective binding and uptake by the target receptor, as well as higher potency and stability compared to linear types. This paper provides an overview of the categories, synthesis methods and various applications of cyclic peptides. The various applications of cyclic peptides include their use as pro-apoptotic and anti-microbial agents, their application as targeting ligands in drug delivery and diagnostic agents, as well as agricultural and therapeutics applications that are elaborated and discussed in this paper.


2007 ◽  
Vol 18 (5) ◽  
pp. 1560-1567 ◽  
Author(s):  
Alma D. Miranda-Olvera ◽  
Guillermina Ferro-Flores ◽  
Martha Pedraza-López ◽  
Consuelo Arteaga de Murphy ◽  
Luis M. De León-Rodríguez

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 840
Author(s):  
Sarah I. Bukhari ◽  
Syed Sarim Imam ◽  
Mohammad Zaki Ahmad ◽  
Parameswara Rao Vuddanda ◽  
Sultan Alshehri ◽  
...  

Cancer is one of the major leading causes of mortality in the world. The implication of nanotherapeutics in cancer has garnered splendid attention owing to their capability to efficiently address various difficulties associated with conventional drug delivery systems such as non-specific biodistribution, poor efficacy, and the possibility of occurrence of multi-drug resistance. Amongst a plethora of nanocarriers for drugs, this review emphasized lipidic nanocarrier systems for delivering anticancer therapeutics because of their biocompatibility, safety, high drug loading and capability to simultaneously carrying imaging agent and ligands as well. Furthermore, to date, the lack of interaction between diagnosis and treatment has hampered the efforts of the nanotherapeutic approach alone to deal with cancer effectively. Therefore, a novel paradigm with concomitant imaging (with contrasting agents), targeting (with biomarkers), and anticancer agent being delivered in one lipidic nanocarrier system (as cancer theranostics) seems to be very promising in overcoming various hurdles in effective cancer treatment. The major obstacles that are supposed to be addressed by employing lipidic theranostic nanomedicine include nanomedicine reach to tumor cells, drug internalization in cancer cells for therapeutic intervention, off-site drug distribution, and uptake via the host immune system. A comprehensive account of recent research updates in the field of lipidic nanocarrier loaded with therapeutic and diagnostic agents is covered in the present article. Nevertheless, there are notable hurdles in the clinical translation of the lipidic theranostic nanomedicines, which are also highlighted in the present review along with plausible countermeasures.


Author(s):  
Maria Kjærup ◽  
Stefania Kouzeli ◽  
Mikael B. Skov ◽  
Jesper Kjeldskov ◽  
Charlotte S. Skov ◽  
...  

2020 ◽  
Vol 2 (1) ◽  
pp. 1-15
Author(s):  
Swati Agrawal ◽  
Sunil K. Nooti ◽  
Harbinder Singh ◽  
Vikrant Rai

Nanotechnology could offer a new complementary strategy for the treatment of vascular diseases including coronary, carotid, or peripheral arterial disease due to narrowing or blockage of the artery caused by atherosclerosis. These arterial diseases manifest correspondingly as angina and myocardial infarction, stroke, and intermittent claudication of leg muscles during exercise. The pathogenesis of atherosclerosis involves biological events at the cellular and molecular level, thus targeting these using nanomaterials precisely and effectively could result in a better outcome. Nanotechnology can mitigate the pathological events by enhancing the therapeutic efficacy of the therapeutic agent by delivering it at the point of a lesion in a controlled and efficacious manner. Further, combining therapeutics with imaging will enhance the theranostic ability in atherosclerosis. Additionally, nanoparticles can provide a range of delivery systems for genes, proteins, cells, and drugs, which individually or in combination can address various problems within the arteries. Imaging studies combined with nanoparticles helps in evaluating the disease progression as well as the response to the treatment because imaging and diagnostic agents can be delivered precisely to the targeted destinations via nanocarriers. This review focuses on the use of nanotechnology in theranostics of coronary artery and peripheral arterial disease.


2002 ◽  
Vol 45 (spe) ◽  
pp. 135-142 ◽  
Author(s):  
Adriano Duatti ◽  
Alessandra Boschi ◽  
Licia Uccelli

The chemical methods for the production of technetium-99m radiopharmaceuticals containing a terminal Tc<FONT FACE=Symbol>º</FONT>N triple bond have been established more than a decade ago. From that time, the chemistry of nitrido Tc-99m complexes has provided a highly efficient tool for the design and preparation of novel classes of diagnostic agents, and a number of potentially useful radiopharmaceuticals have been discovered. In particular, nitrido technetium-99m tracers have been developed for heart perfusion imaging. In this short review, the chemical and biological properties of the neutral myocardial perfusion tracer bis(N-ethoxy, N-ethyl-dithiocarbamato) nitrido Tc-99m (TcN-NOEt) will be summarized along with the preparation and preliminary biological evaluation of the first class of monocationic nitrido technetium-99m radiopharmaceuticals exhibiting improved biodistribution properties closer to those expected for an ideal perfusion imaging agent.


2017 ◽  
Vol 29 (3) ◽  
pp. 657-671 ◽  
Author(s):  
Amlan Chakraborty ◽  
Jennifer C. Boer ◽  
Cordelia Selomulya ◽  
Magdalena Plebanski

Sign in / Sign up

Export Citation Format

Share Document