scholarly journals Improving cellulase production in submerged fermentation by the expression of a Vitreoscilla hemoglobin in Trichoderma reesei

AMB Express ◽  
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Jie Lin ◽  
Xiamei Zhang ◽  
Bingran Song ◽  
Wei Xue ◽  
Xiaoyun Su ◽  
...  
2021 ◽  
Vol 7 (10) ◽  
pp. 868
Author(s):  
Laila Naher ◽  
Siti Noor Fatin ◽  
Md Abdul Halim Sheikh ◽  
Lateef Adebola Azeez ◽  
Shaiquzzaman Siddiquee ◽  
...  

Fungi are a diverse group of microorganisms that play many roles in human livelihoods. However, the isolation of potential fungal species is the key factor to their utilization in different sectors, including the enzyme industry. Hence, in this study, we used two different fungal repositories—soil and weed leaves—to isolate filamentous fungi and evaluate their potential to produce the cellulase enzyme. The fungal strains were isolated using dichloran rose bengal agar (DRBA) and potato dextrose agar (PDA). For cellulase enzyme production, a rice straw submerged fermentation process was used. The enzyme production was carried out at the different incubation times of 3, 5, and 7 days of culture in submerged conditions with rice straw. Fungal identification studies by morphological and molecular methods showed that the soil colonies matched with Trichoderma reesei, and the weed leaf colonies matched with Aspergillus awamori. These species were coded as T. reesei UMK04 and A. awamori UMK02, respectively. This is the first report of A. awamori UMK02 isolation in Malaysian agriculture. The results of cellulase production using the two fungi incorporated with rice straw submerged fermentation showed that T. reesei produced a higher amount of cellulase at Day 5 (27.04 U/mg of dry weight) as compared with A. awamori (15.19 U/mg of dry weight), and the concentration was significantly different (p < 0.05). Our results imply that T. reesei can be utilized for cellulase production using rice straw.


2018 ◽  
Vol 10 (9) ◽  
pp. 2651-2659 ◽  
Author(s):  
Ranjna Sirohi ◽  
Anupama Singh ◽  
Ayon Tarafdar ◽  
Navin Chandra Shahi ◽  
Ashok Kumar Verma ◽  
...  

2018 ◽  
Vol 63 (2) ◽  
pp. 115-129
Author(s):  
Rahela Carpa ◽  
◽  
Alin Cândea ◽  
Alexei Remizovschi ◽  
Lucian Barbu-Tudoran ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yumeng Chen ◽  
Xingjia Fan ◽  
Xinqing Zhao ◽  
Yaling Shen ◽  
Xiangyang Xu ◽  
...  

Abstract Background The filamentous fungus Trichoderma reesei is one of the best producers of cellulase and has been widely studied for the production of cellulosic ethanol and bio-based products. We previously reported that Mn2+ and N,N-dimethylformamide (DMF) can stimulate cellulase overexpression via Ca2+ bursts and calcium signalling in T. reesei under cellulase-inducing conditions. To further understand the regulatory networks involved in cellulase overexpression in T. reesei, we characterised the Mn2+/DMF-induced calcium signalling pathway involved in the stimulation of cellulase overexpression. Results We found that Mn2+/DMF stimulation significantly increased the intracellular levels of cAMP in an adenylate cyclase (ACY1)-dependent manner. Deletion of acy1 confirmed that cAMP is crucial for the Mn2+/DMF-stimulated cellulase overexpression in T. reesei. We further revealed that cAMP elevation induces a cytosolic Ca2+ burst, thereby initiating the Ca2+ signal transduction pathway in T. reesei, and that cAMP signalling causes the Ca2+ signalling pathway to regulate cellulase production in T. reesei. Furthermore, using a phospholipase C encoding gene plc-e deletion strain, we showed that the plc-e gene is vital for cellulase overexpression in response to stimulation by both Mn2+ and DMF, and that cAMP induces a Ca2+ burst through PLC-E. Conclusions The findings of this study reveal the presence of a signal transduction pathway in which Mn2+/DMF stimulation produces cAMP. Increase in the levels of cAMP activates the calcium signalling pathway via phospholipase C to regulate cellulase overexpression under cellulase-inducing conditions. These findings provide insights into the molecular mechanism of the cAMP–PLC–calcium signalling pathway underlying cellulase expression in T. reesei and highlight the potential applications of signal transduction in the regulation of gene expression in fungi.


2000 ◽  
Vol 26 (5-6) ◽  
pp. 394-401 ◽  
Author(s):  
F.C. Domingues ◽  
J.A. Queiroz ◽  
J.M.S. Cabral ◽  
L.P. Fonseca

1982 ◽  
Vol 4 (5) ◽  
pp. 287-292 ◽  
Author(s):  
E. M. Frein ◽  
B. S. Montenecourt ◽  
D. E. Eveleigh

2011 ◽  
Vol 236-238 ◽  
pp. 1005-1013
Author(s):  
Zhi Xi Hang ◽  
Qing Long Rao ◽  
Shi Yuan Yu

The influence of pH and dissolved oxygen tension (DOT) on mycelium growth and cellulase production by Trichoderma reesei was studied in this paper. The experiments were carried out with a cellulose of 10 g/l in a 10 L steam sterilizable bioreactor. The results have shown that H+ concentration was highly fluctuated in the growing and metabolizing periods of mycelium, which went against mycelium growth and cellulase production. Controlling pH to 4.8 was favorable to mycelium growth and cellulase production; the maximum mycelium mass concentration was increased from 2.60 g/l to 2.77 g/l; the maximum filter paper activity was raised from 1.87 IU/ml to 2.79 IU/ml. Meanwhile, the growth and metabolism of mycelium demand an appropriate dissolved oxygen tension (DOT). When the velocity of aeration was increased from 0.4 to 0.5vvm to improve the condition of dissolving oxygen, the mycelium mass concentration was increased from 2.77 g/l to 2.98g/l, and the filter paper activity was raised from 2.79 IU/ml to 2.98 IU/ml.


Sign in / Sign up

Export Citation Format

Share Document