scholarly journals Isolation and biochemical characterization of a metagenome-derived 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase gene from subtropical marine mangrove wetland sediments

AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Huaxian Zhao ◽  
Hua Gao ◽  
Kai Ji ◽  
Bing Yan ◽  
Quanwen Li ◽  
...  
2009 ◽  
pp. 1-12
Author(s):  
Joaquin Gonzalez-Ibarra ◽  
Sławomir Milewski ◽  
Julio Villagomez-Castro ◽  
Carmen Cano-Canchola ◽  
Everardo Lopez-Romero

2004 ◽  
Vol 381 (1) ◽  
pp. 185-193 ◽  
Author(s):  
Jing WU ◽  
Mayur A. PATEL ◽  
Appavu K. SUNDARAM ◽  
Ronald W. WOODARD

An open reading frame, encoding for KDOPS (3-deoxy-D-manno-octulosonate 8-phosphate synthase), from Arabidopsis thaliana was cloned into a T7-driven expression vector. The protein was overexpressed in Escherichia coli and purified to homogeneity. Recombinant A. thaliana KDOPS, in solution, displays an apparent molecular mass of 76 kDa and a subunit molecular mass of 31.519 kDa. Unlike previously studied bacterial KDOPSs, which are tetrameric, A. thaliana KDOPS appears to be a dimer in solution. The optimum temperature of the enzyme is 65 °C and the optimum pH is 7.5, with a broad peak between pH 6.5 and 9.5 showing 90% of maximum activity. The enzyme cannot be inactivated by EDTA or dipicolinic acid treatment, nor it can be activated by a series of bivalent metal ions, suggesting that it is a non-metallo-enzyme, as opposed to the initial prediction that it would be a metallo-enzyme. Kinetic studies showed that the enzyme follows a sequential mechanism with Km=3.6 μM for phosphoenolpyruvate and 3.8 μM for D-arabinose 5-phosphate and kcat=5.9 s−1 at 37 °C. On the basis of the characterization of A. thaliana KDOPS and phylogenetic analysis, plant KDOPSs may represent a new, distinct class of KDOPSs.


2010 ◽  
Vol 48 (1) ◽  
pp. 110-121 ◽  
Author(s):  
Joaquín González-Ibarra ◽  
Sławomir Milewski ◽  
Julio C. Villagómez-Castro ◽  
Carmen Cano-Canchola ◽  
Everardo López-Romero

Author(s):  
J. H. Resau ◽  
N. Howell ◽  
S. H. Chang

Spinach grown in Texas developed “yellow spotting” on the peripheral portions of the leaves. The exact cause of the discoloration could not be determined as there was no evidence of viral or parasitic infestation of the plants and biochemical characterization of the plants did not indicate any significant differences between the yellow and green leaf portions of the spinach. The present study was undertaken using electron microscopy (EM) to determine if a micro-nutrient deficiency was the cause for the discoloration.Green leaf spinach was collected from the field and sent by express mail to the EM laboratory. The yellow and equivalent green portions of the leaves were isolated and dried in a Denton evaporator at 10-5 Torr for 24 hrs. The leaf specimens were then examined using a JEOL 100 CX analytical microscope. TEM specimens were prepared according to the methods of Trump et al.


2014 ◽  
Vol 3 (3) ◽  
pp. 218-225
Author(s):  
R. G. Somkuwar ◽  
M. A. Bhange ◽  
A. K. Upadhyay ◽  
S. D. Ramteke

SauvignonBlanc wine grape was characterized for their various morphological, physiological and biochemical parameters grafted on different rootstocks. Significant differences were recorded for all the parameters studied. The studies on vegetative parameters revealed that the rootstock influences the vegetative growth thereby increasing the photosynthetic activities of a vine. The highest photosynthesis rate was recorded in 140-Ru grafted vine followed by Fercal whereas the lowest in Salt Creek rootstock grafted vines.The rootstock influenced the changes in biochemical constituents in the grafted vine thereby helping the plant to store enough food material. Significant differences were recorded for total carbohydrates, proteins, total phenols and reducing sugar. The vines grafted on1103-Pshowed highest carbohydrates and starch followed by 140-Ru,while the least amount of carbohydrates were recorded in 110-R and Salt Creek grafted vines respectively.Among the different rootstock graft combinations, Fercal showed highest amount of reducing sugar, proteins and phenols, followed by 1103-P and SO4, however, the lowest amount of reducing sugar, proteins and phenols were recorded with 110-R grafted vines.The vines grafted on different rootstocks showed changes in nutrient uptake. Considering this, the physico-biochemical characterization of grafted vine may help to identify particularrootstocks combination that could influence a desired trait in commercial wine grape varieties after grafting.


Sign in / Sign up

Export Citation Format

Share Document