scholarly journals An image denoising method based on BP neural network optimized by improved whale optimization algorithm

Author(s):  
Chunzhi Wang ◽  
Min Li ◽  
Ruoxi Wang ◽  
Han Yu ◽  
Shuping Wang

AbstractAs an important part of smart city construction, traffic image denoising has been studied widely. Image denoising technique can enhance the performance of segmentation and recognition model and improve the accuracy of segmentation and recognition results. However, due to the different types of noise and the degree of noise pollution, the traditional image denoising methods generally have some problems, such as blurred edges and details, loss of image information. This paper presents an image denoising method based on BP neural network optimized by improved whale optimization algorithm. Firstly, the nonlinear convergence factor and adaptive weight coefficient are introduced into the algorithm to improve the optimization ability and convergence characteristics of the standard whale optimization algorithm. Then, the improved whale optimization algorithm is used to optimize the initial weight and threshold value of BP neural network to overcome the dependence in the construction process, and shorten the training time of the neural network. Finally, the optimized BP neural network is applied to benchmark image denoising and traffic image denoising. The experimental results show that compared with the traditional denoising methods such as Median filtering, Neighborhood average filtering and Wiener filtering, the proposed method has better performance in peak signal-to-noise ratio.

2021 ◽  
Author(s):  
Chunzhi Wang ◽  
Min Li ◽  
Ruoxi Wang ◽  
Han Yu ◽  
Shuping Wang

Abstract As an important part of smart city construction, traffic image denoising has been studied widely. Image denoising technique can enhance the performance of segmentation and recognition model, and improve the accuracy of segmentation and recognition results. However, due to the different types of noise and the degree of noise pollution, the traditional image denoising methods generally have some problems, such as blurred edges and details, loss of image information. This paper presents an image denoising method based on BP neural network optimized by improved whale optimization algorithm. Firstly, the nonlinear convergence factor and adaptive weight coefficient are introduced into the algorithm to improve the optimization ability and convergence characteristics of the standard whale optimization algorithm. Then, the improved whale optimization algorithm is used to optimize the initial weight and threshold value of BP neural network to overcome the dependence in the construction process, and shorten the training time of the neural network. Finally, the optimized BP neural network is applied to benchmark image denoising and traffic image denoising. The experimental results show that compared with the traditional denoising methods such as Median filtering, Neighborhood average filtering and Wiener filtering, the proposed algorithm has better performance in peak signal-to-noise ratio (PSNR) than other algorithms.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 48428-48437 ◽  
Author(s):  
Fatemeh Safara ◽  
Amin Salih Mohammed ◽  
Moayad Yousif Potrus ◽  
Saqib Ali ◽  
Quan Thanh Tho ◽  
...  

Author(s):  
Surbhi Vijh ◽  
Prashant Gaurav ◽  
Hari Mohan Pandey

Abstract In this paper, we have proposed a hybrid bio-inspired algorithm which takes the merits of whale optimization algorithm (WOA) and adaptive particle swarm optimization (APSO). The proposed algorithm is referred as the hybrid WOA_APSO algorithm. We utilize a convolutional neural network (CNN) for classification purposes. Extensive experiments are performed to evaluate the performance of the proposed model. Here, pre-processing and segmentation are performed on 120 lung CT images for obtaining the segmented tumored and non-tumored region nodule. The statistical, texture, geometrical and structural features are extracted from the processed image using different techniques. The optimized feature selection plays a crucial role in determining the accuracy of the classification algorithm. The novel variant of whale optimization algorithm and adaptive particle swarm optimization, hybrid bio-inspired WOA_APSO, is proposed for selecting optimized features. The feature selection grouping is applied by embedding linear discriminant analysis which helps in determining the reduced dimensions of subsets. Twofold performance comparisons are done. First, we compare the performance against the different classification techniques such as support vector machine, artificial neural network (ANN) and CNN. Second, the computational cost of the hybrid WOA_APSO is compared with the standard WOA and APSO algorithms. The experimental result reveals that the proposed algorithm is capable of automatic lung tumor detection and it outperforms the other state-of-the-art methods on standard quality measures such as accuracy (97.18%), sensitivity (97%) and specificity (98.66%). The results reported in this paper are encouraging; hence, these results will motivate other researchers to explore more in this direction.


Sign in / Sign up

Export Citation Format

Share Document