scholarly journals Hybrid bio-inspired algorithm and convolutional neural network for automatic lung tumor detection

Author(s):  
Surbhi Vijh ◽  
Prashant Gaurav ◽  
Hari Mohan Pandey

Abstract In this paper, we have proposed a hybrid bio-inspired algorithm which takes the merits of whale optimization algorithm (WOA) and adaptive particle swarm optimization (APSO). The proposed algorithm is referred as the hybrid WOA_APSO algorithm. We utilize a convolutional neural network (CNN) for classification purposes. Extensive experiments are performed to evaluate the performance of the proposed model. Here, pre-processing and segmentation are performed on 120 lung CT images for obtaining the segmented tumored and non-tumored region nodule. The statistical, texture, geometrical and structural features are extracted from the processed image using different techniques. The optimized feature selection plays a crucial role in determining the accuracy of the classification algorithm. The novel variant of whale optimization algorithm and adaptive particle swarm optimization, hybrid bio-inspired WOA_APSO, is proposed for selecting optimized features. The feature selection grouping is applied by embedding linear discriminant analysis which helps in determining the reduced dimensions of subsets. Twofold performance comparisons are done. First, we compare the performance against the different classification techniques such as support vector machine, artificial neural network (ANN) and CNN. Second, the computational cost of the hybrid WOA_APSO is compared with the standard WOA and APSO algorithms. The experimental result reveals that the proposed algorithm is capable of automatic lung tumor detection and it outperforms the other state-of-the-art methods on standard quality measures such as accuracy (97.18%), sensitivity (97%) and specificity (98.66%). The results reported in this paper are encouraging; hence, these results will motivate other researchers to explore more in this direction.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Bingsheng Chen ◽  
Huijie Chen ◽  
Mengshan Li

Feature selection can classify the data with irrelevant features and improve the accuracy of data classification in pattern classification. At present, back propagation (BP) neural network and particle swarm optimization algorithm can be well combined with feature selection. On this basis, this paper adds interference factors to BP neural network and particle swarm optimization algorithm to improve the accuracy and practicability of feature selection. This paper summarizes the basic methods and requirements for feature selection and combines the benefits of global optimization with the feedback mechanism of BP neural networks to feature based on backpropagation and particle swarm optimization (BP-PSO). Firstly, a chaotic model is introduced to increase the diversity of particles in the initial process of particle swarm optimization, and an adaptive factor is introduced to enhance the global search ability of the algorithm. Then, the number of features is optimized to reduce the number of features on the basis of ensuring the accuracy of feature selection. Finally, different data sets are introduced to test the accuracy of feature selection, and the evaluation mechanisms of encapsulation mode and filtering mode are used to verify the practicability of the model. The results show that the average accuracy of BP-PSO is 8.65% higher than the suboptimal NDFs model in different data sets, and the performance of BP-PSO is 2.31% to 18.62% higher than the benchmark method in all data sets. It shows that BP-PSO can select more distinguishing feature subsets, which verifies the accuracy and practicability of this model.


2018 ◽  
Vol 173 ◽  
pp. 03052
Author(s):  
CHU Ding-li ◽  
CHEN Hong ◽  
CHEN Han-yi

Aiming at the problem of linear instantaneous aliasing in blind source separation, a new method of blind signal separation using whale optimization algorithm is proposed in this paper, which provides a new research idea and method for blind signal separation. The new method adopts the method of independent component analysis, optimizes the objective function by using the whale optimization algorithm, realizes the blind separation of instantaneous aliasing signals, and effectively avoids the problem of complex parameters and slow convergence rate of the particle swarm optimization algorithm. The simulation results show that the performance of whale optimization algorithm is better than that of particle swarm optimization for blind source separation, and it is effective for blind signal separation.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2008
Author(s):  
Mustufa Haider Abidi ◽  
Usama Umer ◽  
Muneer Khan Mohammed ◽  
Mohamed K. Aboudaif ◽  
Hisham Alkhalefah

Data classification has been considered extensively in different fields, such as machine learning, artificial intelligence, pattern recognition, and data mining, and the expansion of classification has yielded immense achievements. The automatic classification of maintenance data has been investigated over the past few decades owing to its usefulness in construction and facility management. To utilize automated data classification in the maintenance field, a data classification model is implemented in this study based on the analysis of different mechanical maintenance data. The developed model involves four main steps: (a) data acquisition, (b) feature extraction, (c) feature selection, and (d) classification. During data acquisition, four types of dataset are collected from the benchmark Google datasets. The attributes of each dataset are further processed for classification. Principal component analysis and first-order and second-order statistical features are computed during the feature extraction process. To reduce the dimensions of the features for error-free classification, feature selection was performed. The hybridization of two algorithms, the Whale Optimization Algorithm (WOA) and Spotted Hyena Optimization (SHO), tends to produce a new algorithm—i.e., a Spotted Hyena-based Whale Optimization Algorithm (SH-WOA), which is adopted for performing feature selection. The selected features are subjected to a deep learning algorithm called Recurrent Neural Network (RNN). To enhance the efficiency of conventional RNNs, the number of hidden neurons in an RNN is optimized using the developed SH-WOA. Finally, the efficacy of the proposed model is verified utilizing the entire dataset. Experimental results show that the developed model can effectively solve uncertain data classification, which minimizes the execution time and enhances efficiency.


Author(s):  
Lalit Kumar ◽  
Kusum Kumari Bharti

Abstract Nature is a great source of inspiration for solving complex problems in real-world. In this paper, a hybrid nature-inspired algorithm is proposed for feature selection problem. Traditionally, the real-world datasets contain all kinds of features informative as well as non-informative. These features not only increase computational complexity of the underlying algorithm but also deteriorate its performance. Hence, there an urgent need of feature selection method that select an informative subset of features from high dimensional without compromising the performance of the underlying algorithm. In this paper, we select an informative subset of features and perform cluster analysis by employing a cross breed approach of binary particle swarm optimization (BPSO) and sine cosine algorithm (SCA) named as hybrid binary particle swarm optimization and sine cosine algorithm (HBPSOSCA). Here, we employ a V-shaped transfer function to compute the likelihood of changing position for all particles. First, the effectiveness of the proposed method is tested on ten benchmark test functions. Second, the HBPSOSCA is used for data clustering problem on seven real-life datasets taken from the UCI machine learning store and gene expression model selector. The performance of proposed method is tested in comparison to original BPSO, modified BPSO with chaotic inertia weight (C-BPSO), binary moth flame optimization algorithm, binary dragonfly algorithm, binary whale optimization algorithm, SCA, and binary artificial bee colony algorithm. The conducted analysis demonstrates that the proposed method HBPSOSCA attain better performance in comparison to the competitive methods in most of the cases.


Author(s):  
Faseela C. K. ◽  
H. Vennila

<p>This paper work present one of the latest meta heuristic optimization approaches named whale optimization algorithm as a new algorithm developed to solve the economic dispatch problem. The execution of the utilized algorithm is analyzed using standard test system of IEEE 30 bus system. The proposed algorithm delivered optimum or near optimum solutions. Fuel cost and emission costs are considered together to get better result for economic dispatch. The analysis shows good convergence property for WOA and provides better results in comparison with PSO. The achieved results in this study using the above-mentioned algorithm have been compared with obtained results using other intelligent methods such as particle swarm Optimization. The overall performance of this algorithm collates with early proven optimization methodology, Particle Swarm Optimization (PSO). The minimum cost for the generation of units is obtained for the standard bus system.</p>


2021 ◽  
Vol 2132 (1) ◽  
pp. 012006
Author(s):  
Ya Shen ◽  
Chen Zhang ◽  
Xu Bai ◽  
ChongQing Zhang

Abstract An ameliorative cultural algorithm (CA) based on particle swarm optimization (PSO) and whale optimization algorithm (WOA) is raised (CA-PSOWOA), so as to conquer the defects of WOA and PSO, such as poor global exploration ability and easy fall into local optimal solution. Firstly, a nonlinear inertia weight strategy is leaded to optimize the PSO and WOA, then CA is introduced to regulate the ability of global exploration and local exploitation of PSO and WOA. By testing on benchmark functions, it is proved that CA-PSOWOA improves the global exploration ability and solution accuracy, and its performance is better than the traditional PSO and WOA, and other algorithms.


Author(s):  
Chunzhi Wang ◽  
Min Li ◽  
Ruoxi Wang ◽  
Han Yu ◽  
Shuping Wang

AbstractAs an important part of smart city construction, traffic image denoising has been studied widely. Image denoising technique can enhance the performance of segmentation and recognition model and improve the accuracy of segmentation and recognition results. However, due to the different types of noise and the degree of noise pollution, the traditional image denoising methods generally have some problems, such as blurred edges and details, loss of image information. This paper presents an image denoising method based on BP neural network optimized by improved whale optimization algorithm. Firstly, the nonlinear convergence factor and adaptive weight coefficient are introduced into the algorithm to improve the optimization ability and convergence characteristics of the standard whale optimization algorithm. Then, the improved whale optimization algorithm is used to optimize the initial weight and threshold value of BP neural network to overcome the dependence in the construction process, and shorten the training time of the neural network. Finally, the optimized BP neural network is applied to benchmark image denoising and traffic image denoising. The experimental results show that compared with the traditional denoising methods such as Median filtering, Neighborhood average filtering and Wiener filtering, the proposed method has better performance in peak signal-to-noise ratio.


Sign in / Sign up

Export Citation Format

Share Document