scholarly journals Shape-preserving properties of a new family of generalized Bernstein operators

Author(s):  
Qing-Bo Cai ◽  
Xiao-Wei Xu
Axioms ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 61
Author(s):  
Francesca Pitolli

Boundary value problems having fractional derivative in space are used in several fields, like biology, mechanical engineering, control theory, just to cite a few. In this paper we present a new numerical method for the solution of boundary value problems having Caputo derivative in space. We approximate the solution by the Schoenberg-Bernstein operator, which is a spline positive operator having shape-preserving properties. The unknown coefficients of the approximating operator are determined by a collocation method whose collocation matrices can be constructed efficiently by explicit formulas. The numerical experiments we conducted show that the proposed method is efficient and accurate.


2011 ◽  
Vol 48 (1) ◽  
pp. 23-43 ◽  
Author(s):  
Sorin Gal

In this paper, first we prove Voronovskaja’s convergence theorem for complex q-Bernstein polynomials, 0 < q < 1, attached to analytic functions in compact disks in ℂ centered at origin, with quantitative estimate of this convergence. As an application, we obtain the exact order in approximation of analytic functions by the complex q-Bernstein polynomials on compact disks. Finally, we study the approximation properties of their iterates for any q > 0 and we prove that the complex qn-Bernstein polynomials with 0 < qn < 1 and qn → 1, preserve in the unit disk (beginning with an index) the starlikeness, convexity and spiral-likeness.


Filomat ◽  
2010 ◽  
Vol 24 (3) ◽  
pp. 55-72 ◽  
Author(s):  
Barnabás Bede ◽  
Lucian Coroianu ◽  
Sorin Gal

Starting from the study of the Shepard nonlinear operator of max-prod type in [6], [7], in the book [8], Open Problem 5.5.4, pp. 324-326, the Favard-Sz?sz-Mirakjan max-prod type operator is introduced and the question of the approximation order by this operator is raised. In the recent paper [1], by using a pretty complicated method to this open question an answer is given by obtaining an upper pointwise estimate of the approximation error of the form C?1(f;?x/?n) (with an unexplicit absolute constant C>0) and the question of improving the order of approximation ?1(f;?x/?n) is raised. The first aim of this note is to obtain the same order of approximation but by a simpler method, which in addition presents, at least, two advantages : it produces an explicit constant in front of ?1(f;?x/?n) and it can easily be extended to other max-prod operators of Bernstein type. Also, we prove by a counterexample that in some sense, in general this type of order of approximation with respect to ?1(f;?) cannot be improved. However, for some subclasses of functions, including for example the bounded, nondecreasing concave functions, the essentially better order ?1 (f;1/n) is obtained. Finally, some shape preserving properties are obtained.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 806 ◽  
Author(s):  
Pakeeza Ashraf ◽  
Abdul Ghaffar ◽  
Dumitru Baleanu ◽  
Irem Sehar ◽  
Kottakkaran Sooppy Nisar ◽  
...  

In this paper, we analyze shape-preserving behavior of a relaxed four-point binary interpolating subdivision scheme. These shape-preserving properties include positivity-preserving, monotonicity-preserving and convexity-preserving. We establish the conditions on the initial control points that allow the generation of shape-preserving limit curves by the four-point scheme. Some numerical examples are given to illustrate the graphical representation of shape-preserving properties of the relaxed scheme.


Sign in / Sign up

Export Citation Format

Share Document