scholarly journals Existence of positive solutions for Caputo fractional difference equation

2015 ◽  
Vol 2015 (1) ◽  
Author(s):  
Huiqin Chen ◽  
Zhen Jin ◽  
Shugui Kang
2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Moustafa El-Shahed ◽  
Farah M. Al-Askar

We investigate the existence of multiple positive solutions to the nonlinear -fractional boundary value problem , , by using a fixed point theorem in a cone.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Lili Kong ◽  
Huiqin Chen ◽  
Luping Li ◽  
Shugui Kang

In this paper, we introduce the application of three fixed point theorem by discussing the existence of three positive solutions for a class of Caputo fractional difference equation boundary value problem. We establish the condition of the existence of three positive solutions for this problem.


2020 ◽  
Vol 23 (2) ◽  
pp. 571-590
Author(s):  
Mei Wang ◽  
Baoguo Jia ◽  
Feifei Du ◽  
Xiang Liu

AbstractIn this paper, an integral inequality and the fractional Halanay inequalities with bounded time delays in fractional difference are investigated. By these inequalities, the asymptotical stability conditions of Caputo and Riemann-Liouville fractional difference equation with bounded time delays are obtained. Several examples are presented to illustrate the results.


1994 ◽  
Vol 25 (3) ◽  
pp. 257-265
Author(s):  
J. H. SHEN ◽  
Z. C. WANG ◽  
X. Z. QIAN

Consider the neutral difference equation \[\Delta(x_n- cx_{n-m})+p_nx_{n-k}=0, n\ge N\qquad (*) \] where $c$ and $p_n$ are real numbers, $k$ and $N$ are nonnegative integers, and $m$ is positive integer. We show that if \[\sum_{n=N}^\infty |p_n|<\infty \qquad (**) \] then Eq.(*) has a positive solution when $c \neq 1$. However, an interesting example is also given which shows that (**) does not imply that (*) has a positive solution when $c =1$.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Mirela Garić-Demirović ◽  
Samra Moranjkić ◽  
Mehmed Nurkanović ◽  
Zehra Nurkanović

We investigate the local and global character of the unique equilibrium point and boundedness of the solutions of certain homogeneous fractional difference equation with quadratic terms. Also, we consider Neimark–Sacker bifurcations and give the asymptotic approximation of the invariant curve.


2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Jin-Fa Cheng ◽  
Yu-Ming Chu

We independently propose a new kind of the definition of fractional difference, fractional sum, and fractional difference equation, give some basic properties of fractional difference and fractional sum, and give some examples to demonstrate several methods of how to solve certain fractional difference equations.


2018 ◽  
Vol 71 (1) ◽  
pp. 53-64 ◽  
Author(s):  
George E. Chatzarakis ◽  
Palaniyappan Gokulraj ◽  
Thirunavukarasu Kalaimani

Abstract In this paper, we study the oscillatory behavior of solutions of the fractional difference equation of the form $$\Delta \left( {r\left( t \right)g\left( {{\Delta ^\alpha }x(t)} \right)} \right) + p(t)f\left( {\sum\limits_{s = {t_0}}^{t - 1 + \alpha } {{{(t - s - 1)}^{( - \alpha )}}x(s)} } \right) = 0, & t \in {_{{t_0} + 1 - \alpha }},$$ where Δα denotes the Riemann-Liouville fractional difference operator of order α, 0 < α ≤ 1, ℕt0+1−α={t0+1−αt0+2−α…}, t0 > 0 and γ > 0 is a quotient of odd positive integers. We establish some oscillatory criteria for the above equation, using the Riccati transformation and Hardy type inequalities. Examples are provided to illustrate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document