scholarly journals Weak convergence theorems for split feasibility problems on zeros of the sum of monotone operators and fixed point sets in Hilbert spaces

2016 ◽  
Vol 2017 (1) ◽  
Author(s):  
Montira Suwannaprapa ◽  
Narin Petrot ◽  
Suthep Suantai
Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1012
Author(s):  
Suthep Suantai ◽  
Narin Petrot ◽  
Montira Suwannaprapa

We consider the split feasibility problem in Hilbert spaces when the hard constraint is common solutions of zeros of the sum of monotone operators and fixed point sets of a finite family of nonexpansive mappings, while the soft constraint is the inverse image of a fixed point set of a nonexpansive mapping. We introduce iterative algorithms for the weak and strong convergence theorems of the constructed sequences. Some numerical experiments of the introduced algorithm are also discussed.


2017 ◽  
Vol 33 (1) ◽  
pp. 09-26
Author(s):  
QAMRUL HASAN ANSARI ◽  
◽  
AISHA REHAN ◽  
◽  

Inspired by the recent work of Takahashi et al. [W. Takahashi, H.-K. Xu and J.-C. Yao, Iterative methods for generalized split feasibility problems in Hilbert spaces, Set-Valued Var. Anal., 23 (2015), 205–221], in this paper, we study generalized split feasibility problems (GSFPs) in the setting of Banach spaces. We propose iterative algorithms to compute the approximate solutions of such problems. The weak convergence of the sequence generated by the proposed algorithms is studied. As applications, we derive some algorithms and convergence results for some problems from nonlinear analysis, namely, split feasibility problems, equilibrium problems, etc. Our results generalize several known results in the literature including the results of Takahashi et al. [W. Takahashi, H.-K. Xu and J.-C. Yao, Iterative methods for generalized split feasibility problems in Hilbert spaces, SetValued Var. Anal., 23 (2015), 205–221].


Filomat ◽  
2019 ◽  
Vol 33 (16) ◽  
pp. 5345-5353
Author(s):  
Min Liu ◽  
Shih-Sen Changb ◽  
Ping Zuo ◽  
Xiaorong Li

In this paper, we consider a class of split feasibility problems in Banach space. By using shrinking projective method and the modified proximal point algorithm, we propose an iterative algorithm. Under suitable conditions some strong convergence theorems are proved. Our results extend a recent result of Takahashi-Xu-Yao (Set-Valued Var. Anal. 23, 205-221 (2015)) from Hilbert spaces to Banach spaces. Moreover, the method of proof is also different.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Jing Quan ◽  
Shih-sen Chang ◽  
Xiang Zhang

The purpose of this paper is to prove some weak and strong convergence theorems for solving the multiple-set split feasibility problems forκ-strictly pseudononspreading mapping in infinite-dimensional Hilbert spaces by using the proposed iterative method. The main results presented in this paper extend and improve the corresponding results of Xu et al. (2006), of Osilike et al. (2011), and of many other authors.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Kamonrat Sombut ◽  
Somyot Plubtieng

The purpose of this paper is to introduce an iterative algorithm for finding a common element of the set of fixed points of quasi-nonexpansive mappings and the solution of split feasibility problems (SFP) and systems of equilibrium problems (SEP) in Hilbert spaces. We prove that the sequences generated by the proposed algorithm converge weakly to a common element of the fixed points set of quasi-nonexpansive mappings and the solution of split feasibility problems and systems of equilibrium problems under mild conditions. Our main result improves and extends the recent ones announced by Ceng et al. (2012) and many others.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 167 ◽  
Author(s):  
Prasit Cholamjiak ◽  
Suparat Kesornprom ◽  
Nattawut Pholasa

In this work, we study the inclusion problem of the sum of two monotone operators and the fixed-point problem of nonexpansive mappings in Hilbert spaces. We prove the weak and strong convergence theorems under some weakened conditions. Some numerical experiments are also given to support our main theorem.


Sign in / Sign up

Export Citation Format

Share Document