scholarly journals Effect of heat shock on hot water plumbing microbiota and Legionella pneumophila control

Microbiome ◽  
2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Pan Ji ◽  
William J. Rhoads ◽  
Marc A. Edwards ◽  
Amy Pruden
2012 ◽  
Vol 78 (19) ◽  
pp. 6850-6858 ◽  
Author(s):  
Maha Farhat ◽  
Marina Moletta-Denat ◽  
Jacques Frère ◽  
Séverine Onillon ◽  
Marie-Cécile Trouilhé ◽  
...  

ABSTRACTLegionellaspecies are frequently detected in hot water systems, attached to the surface as a biofilm. In this work, the dynamics ofLegionellaspp. and diverse bacteria and eukarya associated together in the biofilm, coming from a pilot scale 1 system simulating a real hot water system, were investigated throughout 6 months after two successive heat shock treatments followed by three successive chemical treatments. Community structure was assessed by a fingerprint technique, single-strand conformation polymorphism (SSCP). In addition, the diversity and dynamics ofLegionellaand eukarya were investigated by small-subunit (SSU) ribosomal cloning and sequencing. Our results showed that pathogenicLegionellaspecies remained after the heat shock and chemical treatments (Legionella pneumophilaandLegionella anisa, respectively). The biofilm was not removed, and the bacterial community structure was transitorily affected by the treatments. Moreover, several amoebae had been detected in the biofilm before treatments (Thecamoebaesp.,Vannellasp., andHartmanella vermiformis) and after the first heat shock treatment, but onlyH. vermiformisremained. However, another protozoan affiliated with Alveolata, which is known as a host cell forLegionella, dominated the eukaryal species after the second heat shock and chemical treatment tests. Therefore, effectiveLegionelladisinfection may be dependent on the elimination of these important microbial components. We suggest that eradicatingLegionellain hot water networks requires better study of bacterial and eukaryal species associated withLegionellain biofilms.


2020 ◽  
Author(s):  
Joseph Saoud ◽  
Thangadurai Mani ◽  
Sébastien P. Faucher

ABSTRACTLegionella pneumophila (Lp) is an inhabitant of natural and man-made water systems where it replicates within amoebae and ciliates and survives within biofilms. When Lp-contaminated aerosols are breathed in, Lp will enter the lungs and infect human alveolar macrophages, causing a severe pneumonia known as Legionnaires Disease. Lp is often found in hot water distribution systems (HWDS), which are linked to nosocomial outbreaks. Heat treatment is used to disinfect HWDS and reduce the concentration of Lp. However, Lp is often able to recolonize these water systems, indicating an efficient heat-shock response. Tail-specific proteases (Tsp) are typically periplasmic proteases implicated in degrading aberrant proteins in the periplasm and important for surviving thermal stress. In this paper, we show that Tsp, encoded by the lpg0499 gene in Lp Philadelphia-1, is important for surviving thermal stress in water and for optimal infection of amoeba when a shift in temperature occurs during intracellular growth. Tsp is expressed in the post-exponential phase but repressed in the exponential phase. The cis-encoded small regulatory RNA Lpr17 shows opposite expression, suggesting that it represses translation of tsp. In addition, tsp is regulated by CpxR, a major regulator in Lp, in a Lpr17-independent manner. Deletion of CpxR also reduced the ability of Lp to survive heat shock. In conclusion, this study shows that Tsp is an important factor for the survival and growth of Lp in water systems.IMPORTANCELegionella pneumophila (Lp) is a major cause of nosocomial and community-acquired pneumonia. Lp is found in water systems including hot water distribution systems. Heat treatment is a method of disinfection often used to limit Lp’s presence in such systems; however, the benefit is usually short term as Lp is able to quickly recolonize these systems. Presumably, Lp respond efficiently to thermal stress, but so far not much is known about the genes involved. In this paper, we show that the Tail-specific protease (Tsp) and the two-component system CpxRA are required for resistance to thermal stress, when Lp is free in water and when it is inside host cells. Our study identifies critical systems for the survival of Lp in its natural environment under thermal stress.


2021 ◽  
Vol 87 (9) ◽  
Author(s):  
Joseph Saoud ◽  
Thangadurai Mani ◽  
Sébastien P. Faucher

ABSTRACT Legionella pneumophila (Lp) is an inhabitant of natural and human-made water systems, where it replicates within amoebae and ciliates and survives within biofilms. When Lp-contaminated aerosols are breathed in, Lp can enter the lungs and may infect human alveolar macrophages, causing severe pneumonia known as Legionnaires’ disease. Lp is often found in hot water distribution systems (HWDS), which are linked to nosocomial outbreaks. Heat treatment is used to disinfect HWDS and reduce the concentration of Lp. However, Lp is often able to recolonize these water systems, indicating an efficient heat shock response. Tail-specific proteases (Tsp) are typically periplasmic proteases implicated in degrading aberrant proteins in the periplasm and important for surviving thermal stress. In Lp Philadelphia-1, Tsp is encoded by the lpg0499 gene. In this paper, we show that Tsp is important for surviving thermal stress in water and for optimal infection of amoeba when a shift in temperature occurs during intracellular growth. We also demonstrate that Tsp is expressed in the postexponential phase but repressed in the exponential phase and that the cis-encoded small regulatory RNA Lpr17 shows the opposite expression, suggesting that it represses translation of tsp. In addition, our results show that tsp is regulated by CpxR, a major regulator in Lp, in an Lpr17-independent manner. Deletion of CpxR also reduced the ability of Lp to survive heat shock. In conclusion, our study shows that Tsp is likely an important factor for the survival and growth of Lp in water systems. IMPORTANCE Lp is a major cause of nosocomial and community-acquired pneumonia. Lp is found in water systems, including hot water distribution systems. Heat treatment is a method of disinfection often used to limit the presence of Lp in such systems; however, the benefit is usually short term, as Lp is able to quickly recolonize these systems. Presumably, Lp responds efficiently to thermal stress, but so far, not much is known about the genes involved. In this paper, we show that the Tsp and the two-component system CpxRA are required for resistance to thermal stress when Lp is free in water and when it is inside host cells. Our study identifies critical systems for the survival of Lp in its natural environment under thermal stress.


Immunology ◽  
1996 ◽  
Vol 89 (2) ◽  
pp. 281-288 ◽  
Author(s):  
C. RETZLAFF ◽  
Y. YAMAMOTO ◽  
S. OKUBO ◽  
P. S. HOFFMAN ◽  
H. FRIEDMAN ◽  
...  

2018 ◽  
Vol 98 (1) ◽  
pp. 60-63 ◽  
Author(s):  
M. Totaro ◽  
P. Valentini ◽  
A.L. Costa ◽  
S. Giorgi ◽  
B. Casini ◽  
...  

The Lancet ◽  
1982 ◽  
Vol 319 (8280) ◽  
pp. 1073 ◽  
Author(s):  
S.P Fisher-Hoch ◽  
M.G Smith ◽  
J.S Colbourne

1997 ◽  
Vol 25 (6) ◽  
pp. 452-457 ◽  
Author(s):  
Sue Miuetzner ◽  
Robert C. Schwille, ◽  
Adrianne Farley ◽  
Ellen R. Wald ◽  
John H. Ge ◽  
...  

Author(s):  
Ashley Heida ◽  
Alexis Mraz ◽  
Mark Hamilton ◽  
Mark Weir ◽  
Kerry A Hamilton

Legionella pneumophila are bacteria that when inhaled cause Legionnaires’ Disease (LD) and febrile illness Pontiac Fever. As of 2014, LD is the most frequent cause of waterborne disease outbreaks due...


Sign in / Sign up

Export Citation Format

Share Document