scholarly journals Protists as main indicators and determinants of plant performance

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Sai Guo ◽  
Wu Xiong ◽  
Xinnan Hang ◽  
Zhilei Gao ◽  
Zixuan Jiao ◽  
...  

Abstract Background Microbiomes play vital roles in plant health and performance, and the development of plant beneficial microbiomes can be steered by organic fertilizer inputs. Especially well-studied are fertilizer-induced changes on bacteria and fungi and how changes in these groups alter plant performance. However, impacts on protist communities, including their trophic interactions within the microbiome and consequences on plant performance remain largely unknown. Here, we tracked the entire microbiome, including bacteria, fungi, and protists, over six growing seasons of cucumber under different fertilization regimes (conventional, organic, and Trichoderma bio-organic fertilization) and linked microbial data to plant yield to identify plant growth-promoting microbes. Results Yields were higher in the (bio-)organic fertilization treatments. Soil abiotic conditions were altered by the fertilization regime, with the prominent effects coming from the (bio-)organic fertilization treatments. Those treatments also led to the pronounced shifts in protistan communities, especially microbivorous cercozoan protists. We found positive correlations of these protists with plant yield and the density of potentially plant-beneficial microorganisms. We further explored the mechanistic ramifications of these relationships via greenhouse experiments, showing that cercozoan protists can positively impact plant growth, potentially via interactions with plant-beneficial microorganisms including Trichoderma, the biological agent delivered by the bio-fertilizer. Conclusions We show that protists may play central roles in stimulating plant performance through microbiome interactions. Future agricultural practices might aim to specifically enhance plant beneficial protists or apply those protists as novel, sustainable biofertilizers.

2021 ◽  
Vol 15 (4) ◽  
pp. 449-458
Author(s):  
Chenglin Peng ◽  
Jianping Cheng ◽  
Guohan Si ◽  
Zhisheng Zhang ◽  
Benfu Wang ◽  
...  

Excessive application of nitrogen (N) fertilizer usually causes contamination of soil and groundwater. In this study, the rice yield and soil quality were investigated under different content of N fertilizer and amending organic compost (OC) or (and) crop residue (CR) in five-year wheat-rice rotated fields, and the soil microbial communities were inspected by means of Illumina sequencing. The results showed that rice yields were maintained at a high level although the N fertilizer was reduced to 80% of the normal content with amendment of OC and (or) CR. The PH was decreased and available phosphorus increased whenever the N fertilizer was normally applied or decreased when OC and (or) CR was amended, respectively. Available potassium was significantly increased when N fertilizer was reduced but OC and (or) CR was added. The abundance of bacterial and fungal communities was affected by OC or CR. Function prediction indicated that bacteria involved in DNA repair, carbohydrate digestion and absorption, amino acid degradation, caffeine metabolites were affected by OC or CR. Some plant growth promoting microbes (bacterial genus Pantoea, fungal gena Talaromyces and Scolecobasidium) were increased when OC or (and) CR was added. In addition, some nitrification or denitrification related bacteria (Candidatus nitrotoga, Nitrolancea, Noviherbaspirillum, Thioalkalispira) and fermentative metabolite bacteria (Lactobacillus) were increased when N fertilizer was reduced and OC or (and) CR was amended. These microbes may decompose the complex organic matter and improve nutrient transforming cycle to promote plant growth.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1071
Author(s):  
Minchong Shen ◽  
Jiangang Li ◽  
Yuanhua Dong ◽  
Hong Liu ◽  
Junwei Peng ◽  
...  

Microbial treatment has recently been attracting attention as a sustainable agricultural strategy addressing the current problems caused by unreasonable agricultural practices. However, the mechanism through which microbial inoculants promote plant growth is not well understood. In this study, two phosphate-solubilizing bacteria (PSB) were screened, and their growth-promoting abilities were explored. At day 7 (D7), the lengths of the root and sprout with three microbial treatments, M16, M44, and the combination of M16 and M44 (Com), were significantly greater than those with the non-microbial control, with mean values of 9.08 and 4.73, 7.15 and 4.83, and 13.98 and 5.68 cm, respectively. At day 14 (D14), M16, M44, and Com significantly increased not only the length of the root and sprout but also the underground and aboveground biomass. Differential metabolites were identified, and various amino acids, amino acid derivatives, and other plant growth-regulating molecules were significantly enhanced by the three microbial treatments. The profiling of key metabolites associated with plant growth in different microbial treatments showed consistent results with their performances in the germination experiment, which revealed the metabolic mechanism of plant growth-promoting processes mediated by screened PSB. This study provides a theoretical basis for the application of PSB in sustainable agriculture.


Author(s):  
Indriyanti Indriyanti ◽  
Eko Nurcahya Dewi ◽  
Eko Susanto

ABSTRAK Euchema cottonii mengandung unsur mikro dan makro nutrien, serta zat pengatur tumbuh tanaman seperti auksin, giberelin, sitokinin, dan etilen sehingga sangat berpotensi sebagai pupuk organik penyubur tanaman. Penambahan buah nanas berfungsi sebagai sumber C, P, dan K pada ekstrak pupuk rumput laut cair. Penelitian ini bertujuan untuk mengetahui pengaruh penambahan bioaktivator PGPR (Plant Growth Promoting Rhizobacteria)dan buah nanas terhadap kandungan C-organik, nitrogen, fosfor, kalium, pH, suhu, bakteri patogen, dan organoleptik warna. Material yang digunakan dalam penelitian ini adalah E. cottonii, PGPR, dan buah nanas.. Rancangan percobaan yang digunakan adalah Rancangan Acak Lengkap (RAL) dengan 4 perlakuan dan 3 ulangan yaitu perlakuan kontrol (A), penambahan PGPR dan  buah nanas 40% (B), penambahan PGPR dan buah nanas 50% (C), dan penambahan PGPR dan  buah nanas 60% (C). Parameter yang diukur adalah C-organik, nitrogen, fosfor, kalium, pH, suhu, bakteri pathogen, dan oraganoleptik warna. Data parametrik dianalisa dengan uji ANOVA. Hasil penelitian menunjukkan bahwa penambahan buah nanas yang berbeda memberikan pengaruh nyata terhadap kadar C-organik, fosfor, dan kalium (p<0,05), sedangkan nilai nitrogen tidak berbeda nyata. Perlakuan penambahan nanas 50% akan meningkatkan kandungan nitrogen dua kali lebih besar dari pada kontrol. Perlakuan terbaik yaitu pada penambahan PGPR dan nanas 60% dengan kandungan C, P, K berturut-turut adalah 7,02%, 3,44%, dan 3,41%. Kata kunci: Euchema cottonii, Pupuk Oganik Cair, PGPR,  Nanas ABSTRACT Euchema cottoniicontains elements ofmicroandmacronutrients, andplantgrowth regulatorssuch asauxin, gibberellin, cytokinin, andethyleneso ithasgreat potentialas anorganicfertilizer forfertilisingcrops. Addition A. comosusserves asa source of C, P, and Kin theliquid organic fertilizer. This study aimedtodetermine the effect ofbio-activatorPGPRandA. comosus on the content ofC-organic, nitrogen, phosphorus, potassium, pH, temperature, pathogens, and color. The materialusedin this studywereE.cottonii, PGPR, andA. comosus.This research wasexperimentallaboratoriesusing completely randomized designwith 4 differenttreatments and 3replications, namely control (A), addition ofPGPR and A. comosus 40%(B), addition of PGPR  and A. comosus 50% (C), and addition of PGPR and A. comosus 60% (D). Parametersmeasured wereC-organic, nitrogen, phosphorus, potassium, pH, temperature, pathogens, and color organoleptic. Parametric datawere analyzed byANOVA. The results showedthat theaddition ofPGPRandA.comosussignificantly affect(P<0.05) to thelevels ofc-organic, phosphoruslevels, potassium levels, but not nitrogen levels. Addition of pineapple 50% will increase the nitrogen content twice higher than control. The best treatment is addition of PGPR and pineapple 60% with the content of C, P, K respectively 7.02%, 3.44% and 3.41%. Keywords: Euchema cottoni, Liquid Organic Fertilizer, PGPR, Ananas comosus


HortScience ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 451-458
Author(s):  
Juan Carlos Díaz-Pérez ◽  
Jesús Bautista ◽  
Gunawati Gunawan ◽  
Anthony Bateman ◽  
Cliff Martin Riner

Vidalia onions (Allium cepa L.) are sweet, short-day, low pungency, yellow Granex-type bulbs that are popular in the United States because of their mild flavor. There are limited studies on sweet onion plant growth in response to organic fertilization rate. The objective of this report was to evaluate the effects of organic fertilizer rates on sweet onion plant growth, and leaf and bulb mineral nutrients. Experiments were carried out at the Horticulture Farm, Tifton Campus, University of Georgia, in the Winters of 2012–13 and 2013–14. There were five treatments [organic fertilizer 3–2–3 equivalent to 0, 60, 120, 180, and 240 kg·ha−1 nitrogen (N)]. During the season and at the mature plant stage, root, stem, and bulb biomass increased whereas the root-to-shoot ratio decreased with increasing fertilization rate up to 120 kg·ha−1 N. Foliar concentrations of N and Ca decreased whereas Cu concentration increased with increasing organic fertilization rate. Bulb Mg and Mn increased whereas P and Cu decreased with increasing organic fertilization rate. The accumulation of mineral nutrients by onion whole plants increased quadratically (N, P, K, and S) or linearly (Ca and Mg) with increasing fertilization rate. The N use efficiency decreased with increasing organic fertilization rate; the agronomic efficiency of N (AEN) decreased quadratically and the marginal yield decreased linearly with increasing fertilization rate. Chlorophyll indices (CI) were highest with 240 kg·ha−1 N and lowest with 0 kg·ha−1 N. In conclusion, onion plant growth increased with increasing organic fertilizer rate probably because of augmented soil N levels. Observation of nutrient deficiencies late in the season, even at high organic fertilization rates, indicates that preplant application of organic fertilizer was sufficient to cover plant nutritional needs only partially and that applications of N fertilizer later in the season may be necessary. High application rates of organic fertilizer (above those required by the crop) may have resulted in significant N leaching because it is unlikely that the crop used most of the N that was mineralized. Bulb concentrations of P, K, Ca, Mg, S, B, Fe, Cu, and Mn were higher compared with values reported in the literature for onions produced with inorganic fertilizers.


Author(s):  
Natalie W. Breakfield ◽  
Dayna Collett ◽  
Michael E. Frodyma

Plant growth-promoting microbes can affect the plant microbiome, improving different properties of the plant such as yield and health. Many companies are commercializing these microbes as products called biologicals. Defining the product concept is one of the first and most important steps in making a biological product. Companies can use phenotyping and genotyping approaches to identify the microbe to make into a live bacterial product. Screening usually begins in the laboratory and often moves from high-throughput methods to more time and resource-intensive methods culminating in large scale field testing. Once the microbe is chosen, the fermentation process grows the bacteria to the necessary amounts, while the formulation process ensures a stable product in the desired form such as a liquid or powder. The products must show yield increases in the field over several seasons and conditions, but also must be easy to use and cost-effective to be adopted by farmers and other customers. Tying all these data together from the selection process to test results gives a customer a ‘reason to believe’ for the marketing and launch of a successful product.


2021 ◽  
pp. 335-357
Author(s):  
Archi Chaurasia ◽  
Chitrakshi Shandilya ◽  
Isabell Robert Rupa ◽  
Nitin Kumar ◽  
Ajit Varma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document