scholarly journals Novel foraging strategies observed in a growing leopard seal (Hydrurga leptonyx) population at Livingston Island, Antarctic Peninsula

2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Douglas J Krause ◽  
Michael E Goebel ◽  
Gregory J Marshall ◽  
Kyler Abernathy
2016 ◽  
Vol 32 (3) ◽  
pp. 839-867 ◽  
Author(s):  
Douglas J. Krause ◽  
Michael E. Goebel ◽  
Greg J. Marshall ◽  
Kyler Abernathy

Polar Biology ◽  
2008 ◽  
Vol 32 (2) ◽  
pp. 307-310 ◽  
Author(s):  
R. Casaux ◽  
A. Baroni ◽  
A. Ramón ◽  
A. Carlini ◽  
M. Bertolin ◽  
...  

2021 ◽  
Vol 50 (SuplEsp) ◽  
pp. 227-238
Author(s):  
Laura Hernández ◽  
Dalia Barragán ◽  
Javier Negrete ◽  
Sebastián Poljak ◽  
Federico Riet ◽  
...  

The leopard seal (Hydrurga leptonyx) is a genetically low-studied species. In order to conduct the first genetic diversity assessment of this species in Danco Coast (Antarctic Peninsula), 423 bp of the mitochondrial DNA Control Region (mtDNA-CR) was sequenced from 13 blood samples collected in Primavera Base (62º15’S, 58º39’W) during the 2011-2012 austral summer. Our results showed high haplotype diversity (h = 0.99), with various divergent haplotypes. Our findings suggest that leopard seals in the Danco Coast could represent different phylogroups; however, including more genetic markers are needed to confirm this hypothesis.


1995 ◽  
Vol 69 (1) ◽  
pp. 66-84 ◽  
Author(s):  
Simon R. A. Kelly

New discoveries of trigonioid bivalves are documented from three areas in the Antartic Peninsula: the Fossil Bluff Group of Alexander Island, the Latady Formation of the Orville Coast, and the Byers Group of Livingston Island, South Shetland Islands. Eleven taxa are described, representing six genera or subgenera. The faunas are characterized by genera including Vaugonia (Vaugonia), the first Early Jurassic trigonioid recognized on the continent; Vaugonia (V.) and V. (Orthotrigonia?) in the Late Jurassic; and Iotrigonia (Iotrigonia), Myophorella (Scaphogonia), and Pterotrigonia (Pterotrigonia), which span the Jurassic–Cretaceous boundary, reaching the Berriasian stage. The following species are new: Pterotrigonia (P.) cramei n. sp., Pterotrigonia (P.) thomsoni n. sp., Vaugonia (V.) orvillensis n. sp., and V. (Orthotrigonia?) quiltyi n. sp. The faunas show affinities with those of New Zealand and southern Africa. Trigonioids characterize the shallower marine biofacies in the Jurassic of the Antarctic and reflect the principal shallowing events in the history of the region.


2004 ◽  
Vol 16 (3) ◽  
pp. 339-344 ◽  
Author(s):  
BRENDA L. HALL ◽  
ETHAN R. PERRY

Raised beach ridges on Livingston Island of the South Shetland Islands display variations in both quantity and source of ice rafted detritus (IRD) received over time. Whereas the modern beach exhibits little IRD, all of which is of local origin, the next highest beach (∼250 14C yr BP) has large amounts, some of which comes from as far away as the Antarctic Peninsula. Significant quantities of IRD also were deposited ∼1750 14C yr BP. Both time periods coincide with generally cooler regional conditions and, at least in the case of the ∼250 yr old beach, local glacial advance. We suggest that the increases in ice rafting may reflect periods of greater glacial activity, altered ocean circulation, and/or greater iceberg preservation during the late Holocene. Limited IRD and lack of far-travelled erratics on the modern beach are both consistent with the ongoing warming trend in the Antarctic Peninsula region.


1989 ◽  
Vol 1 (3) ◽  
pp. 239-248 ◽  
Author(s):  
P.M. Rees ◽  
J.L. Smellie

A terrestrial sequence on Livingston Island, South Shetland Islands, known as the Williams Point Beds contains a well-preserved, diverse fossil flora previously assigned a Triassic age. Because of their supposed age, volcanic provenance and evidence for active volcanism, the Williams Point Beds have occupied a unique position in Gondwana (pre-Jurassic) stratigraphy in the Antarctic Peninsula region. However, a large new collection of plant specimens obtained at Williams Point has yielded several species of angiosperm leaves, which are abundant and occur at all levels within the Williams Point Beds sequence. Thus, a Triassic age is no longer tenable. On the basis of the plants present and published radiometric ages for associated strata, the Williams Point Beds fossil flora is reassigned to the Cretaceous, and there is some evidence for a more restricted Albian–Cenomanian age. This revision of the age of the Williams Point Beds removes all direct evidence for an active Triassic volcanic arc in the Antarctic Peninsula region.


Sign in / Sign up

Export Citation Format

Share Document