scholarly journals RIPK1 or RIPK3 deletion prevents progressive neuronal cell death and improves memory function after traumatic brain injury

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Antonia Clarissa Wehn ◽  
Igor Khalin ◽  
Marco Duering ◽  
Farida Hellal ◽  
Carsten Culmsee ◽  
...  

AbstractTraumatic brain injury (TBI) causes acute and subacute tissue damage, but is also associated with chronic inflammation and progressive loss of brain tissue months and years after the initial event. The trigger and the subsequent molecular mechanisms causing chronic brain injury after TBI are not well understood. The aim of the current study was therefore to investigate the hypothesis that necroptosis, a form a programmed cell death mediated by the interaction of Receptor Interacting Protein Kinases (RIPK) 1 and 3, is involved in this process. Neuron-specific RIPK1- or RIPK3-deficient mice and their wild-type littermates were subjected to experimental TBI by controlled cortical impact. Posttraumatic brain damage and functional outcome were assessed longitudinally by repetitive magnetic resonance imaging (MRI) and behavioral tests (beam walk, Barnes maze, and tail suspension), respectively, for up to three months after injury. Thereafter, brains were investigated by immunohistochemistry for the necroptotic marker phosphorylated mixed lineage kinase like protein(pMLKL) and activation of astrocytes and microglia. WT mice showed progressive chronic brain damage in cortex and hippocampus and increased levels of pMLKL after TBI. Chronic brain damage occurred almost exclusively in areas with iron deposits and was significantly reduced in RIPK1- or RIPK3-deficient mice by up to 80%. Neuroprotection was accompanied by a reduction of astrocyte and microglia activation and improved memory function. The data of the current study suggest that progressive chronic brain damage and cognitive decline after TBI depend on the expression of RIPK1/3 in neurons. Hence, inhibition of necroptosis signaling may represent a novel therapeutic target for the prevention of chronic post-traumatic brain damage.

2008 ◽  
Vol 25 (7) ◽  
pp. 755-767 ◽  
Author(s):  
Roya Tehranian ◽  
Marie E. Rose ◽  
Vincent Vagni ◽  
Alicia M. Pickrell ◽  
Raymond P. Griffith ◽  
...  

Author(s):  
Xingyun Quan ◽  
Li Song ◽  
Xiaomei Zheng ◽  
Shenjie Liu ◽  
Huaqiang Ding ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhongyuan Bao ◽  
Yinlong Liu ◽  
Binglin Chen ◽  
Zong Miao ◽  
Yiming Tu ◽  
...  

AbstractProkineticin-2 (Prok2) is an important secreted protein likely involved in the pathogenesis of several acute and chronic neurological diseases through currently unidentified regulatory mechanisms. The initial mechanical injury of neurons by traumatic brain injury triggers multiple secondary responses including various cell death programs. One of these is ferroptosis, which is associated with dysregulation of iron and thiols and culminates in fatal lipid peroxidation. Here, we explore the regulatory role of Prok2 in neuronal ferroptosis in vitro and in vivo. We show that Prok2 prevents neuronal cell death by suppressing the biosynthesis of lipid peroxidation substrates, arachidonic acid-phospholipids, via accelerated F-box only protein 10 (Fbxo10)-driven ubiquitination, degradation of long-chain-fatty-acid-CoA ligase 4 (Acsl4), and inhibition of lipid peroxidation. Mice injected with adeno-associated virus-Prok2 before controlled cortical impact injury show reduced neuronal degeneration and improved motor and cognitive functions, which could be inhibited by Fbxo10 knockdown. Our study shows that Prok2 mediates neuronal cell deaths in traumatic brain injury via ferroptosis.


2012 ◽  
Vol 218 (1) ◽  
pp. 209-220 ◽  
Author(s):  
Tatsuki Itoh ◽  
Motohiro Imano ◽  
Shozo Nishida ◽  
Masahiro Tsubaki ◽  
Nobuyuki Mizuguchi ◽  
...  

2018 ◽  
Vol 9 (11) ◽  
Author(s):  
Taryn G. Aubrecht ◽  
Alan I. Faden ◽  
Boris Sabirzhanov ◽  
Ethan P. Glaser ◽  
Brian A. Roelofs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document