scholarly journals Discerning the painter’s hand: machine learning on surface topography

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
F. Ji ◽  
M. S. McMaster ◽  
S. Schwab ◽  
G. Singh ◽  
L. N. Smith ◽  
...  

AbstractAttribution of paintings is a critical problem in art history. This study extends machine learning analysis to surface topography of painted works. A controlled study of positive attribution was designed with paintings produced by a class of art students. The paintings were scanned using a chromatic confocal optical profilometer to produce surface height data. The surface data were divided into virtual patches and used to train an ensemble of convolutional neural networks (CNNs) for attribution. Over a range of square patch sizes from 0.5 to 60 mm, the resulting attribution was found to be 60–96% accurate, and, when comparing regions of different color, was nearly twice as accurate as CNNs using color images of the paintings. Remarkably, short length scales, even as small as a bristle diameter, were the key to reliably distinguishing among artists. These results show promise for real-world attribution, particularly in the case of workshop practice.

2021 ◽  
Author(s):  
Fang Ji ◽  
Michael McMaster ◽  
Samuel Schwab ◽  
Gundeep Singh ◽  
Lauryn Nicole Smith ◽  
...  

Abstract Attribution of paintings is a critical problem in art history. This study extends machine learning analysis to surface topography of painted works. A controlled study of positive attribution was designed with paintings produced by a class of art students. The paintings were scanned using a confocal optical profilometer to produce surface data. The surface data were divided into virtual patches and used to train an ensemble of convolutional neural networks (CNNs) for attribution. Over a range of patch sizes from 0.5 to 60 mm, the resulting attribution was found to be 60 to 96% accurate, and, when comparing regions of different color, was nearly twice as accurate as CNNs using color images of the paintings. Remarkably, short length scales, as small as twice a bristle diameter, were the key to reliably distinguishing among artists. These results show promise for real-world attribution, particularly in the case of workshop practice.


2021 ◽  
Vol 14 (3) ◽  
pp. 101016 ◽  
Author(s):  
Jim Abraham ◽  
Amy B. Heimberger ◽  
John Marshall ◽  
Elisabeth Heath ◽  
Joseph Drabick ◽  
...  

Author(s):  
Dhiraj J. Pangal ◽  
Guillaume Kugener ◽  
Shane Shahrestani ◽  
Frank Attenello ◽  
Gabriel Zada ◽  
...  

Author(s):  
John J. Squiers ◽  
Jeffrey E. Thatcher ◽  
David Bastawros ◽  
Andrew J. Applewhite ◽  
Ronald D. Baxter ◽  
...  

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5285 ◽  
Author(s):  
Mei Sze Tan ◽  
Siow-Wee Chang ◽  
Phaik Leng Cheah ◽  
Hwa Jen Yap

Although most of the cervical cancer cases are reported to be closely related to the Human Papillomavirus (HPV) infection, there is a need to study genes that stand up differentially in the final actualization of cervical cancers following HPV infection. In this study, we proposed an integrative machine learning approach to analyse multiple gene expression profiles in cervical cancer in order to identify a set of genetic markers that are associated with and may eventually aid in the diagnosis or prognosis of cervical cancers. The proposed integrative analysis is composed of three steps: namely, (i) gene expression analysis of individual dataset; (ii) meta-analysis of multiple datasets; and (iii) feature selection and machine learning analysis. As a result, 21 gene expressions were identified through the integrative machine learning analysis which including seven supervised and one unsupervised methods. A functional analysis with GSEA (Gene Set Enrichment Analysis) was performed on the selected 21-gene expression set and showed significant enrichment in a nine-potential gene expression signature, namely PEG3, SPON1, BTD and RPLP2 (upregulated genes) and PRDX3, COPB2, LSM3, SLC5A3 and AS1B (downregulated genes).


Author(s):  
Sivakumar G. Pillai ◽  
Jennifer Woodbury ◽  
Nikhil Dikshit ◽  
Avery Leider ◽  
Charles C. Tappert

Sign in / Sign up

Export Citation Format

Share Document