scholarly journals Dynamic prediction of energy and power usage cost using linear regression-machine learning analysis

2021 ◽  
Vol 1921 ◽  
pp. 012067
Author(s):  
Rani Fathima Kamal Basha ◽  
M.L Bharathi ◽  
Kanagaraj Venusamy
2021 ◽  
Vol 14 (3) ◽  
pp. 101016 ◽  
Author(s):  
Jim Abraham ◽  
Amy B. Heimberger ◽  
John Marshall ◽  
Elisabeth Heath ◽  
Joseph Drabick ◽  
...  

Soil Systems ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 41
Author(s):  
Tulsi P. Kharel ◽  
Amanda J. Ashworth ◽  
Phillip R. Owens ◽  
Dirk Philipp ◽  
Andrew L. Thomas ◽  
...  

Silvopasture systems combine tree and livestock production to minimize market risk and enhance ecological services. Our objective was to explore and develop a method for identifying driving factors linked to productivity in a silvopastoral system using machine learning. A multi-variable approach was used to detect factors that affect system-level output (i.e., plant production (tree and forage), soil factors, and animal response based on grazing preference). Variables from a three-year (2017–2019) grazing study, including forage, tree, soil, and terrain attribute parameters, were analyzed. Hierarchical variable clustering and random forest model selected 10 important variables for each of four major clusters. A stepwise multiple linear regression and regression tree approach was used to predict cattle grazing hours per animal unit (h ha−1 AU−1) using 40 variables (10 per cluster) selected from 130 total variables. Overall, the variable ranking method selected more weighted variables for systems-level analysis. The regression tree performed better than stepwise linear regression for interpreting factor-level effects on animal grazing preference. Cattle were more likely to graze forage on soils with Cd levels <0.04 mg kg−1 (126% greater grazing hours per AU), soil Cr <0.098 mg kg−1 (108%), and a SAGA wetness index of <2.7 (57%). Cattle also preferred grazing (88%) native grasses compared to orchardgrass (Dactylis glomerata L.). The result shows water flow within the landscape position (wetness index), and associated metals distribution may be used as an indicator of animal grazing preference. Overall, soil nutrient distribution patterns drove grazing response, although animal grazing preference was also influenced by aboveground (forage and tree), soil, and landscape attributes. Machine learning approaches helped explain pasture use and overall drivers of grazing preference in a multifunctional system.


2021 ◽  
Vol 11 (9) ◽  
pp. 3866
Author(s):  
Jun-Ryeol Park ◽  
Hye-Jin Lee ◽  
Keun-Hyeok Yang ◽  
Jung-Keun Kook ◽  
Sanghee Kim

This study aims to predict the compressive strength of concrete using a machine-learning algorithm with linear regression analysis and to evaluate its accuracy. The open-source software library TensorFlow was used to develop the machine-learning algorithm. In the machine-earning algorithm, a total of seven variables were set: water, cement, fly ash, blast furnace slag, sand, coarse aggregate, and coarse aggregate size. A total of 4297 concrete mixtures with measured compressive strengths were employed to train and testing the machine-learning algorithm. Of these, 70% were used for training, and 30% were utilized for verification. For verification, the research was conducted by classifying the mixtures into three cases: the case where the machine-learning algorithm was trained using all the data (Case-1), the case where the machine-learning algorithm was trained while maintaining the same number of training dataset for each strength range (Case-2), and the case where the machine-learning algorithm was trained after making the subcase of each strength range (Case-3). The results indicated that the error percentages of Case-1 and Case-2 did not differ significantly. The error percentage of Case-3 was far smaller than those of Case-1 and Case-2. Therefore, it was concluded that the range of training dataset of the concrete compressive strength is as important as the amount of training dataset for accurately predicting the concrete compressive strength using the machine-learning algorithm.


Author(s):  
Dhiraj J. Pangal ◽  
Guillaume Kugener ◽  
Shane Shahrestani ◽  
Frank Attenello ◽  
Gabriel Zada ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Prasanna Date ◽  
Davis Arthur ◽  
Lauren Pusey-Nazzaro

AbstractTraining machine learning models on classical computers is usually a time and compute intensive process. With Moore’s law nearing its inevitable end and an ever-increasing demand for large-scale data analysis using machine learning, we must leverage non-conventional computing paradigms like quantum computing to train machine learning models efficiently. Adiabatic quantum computers can approximately solve NP-hard problems, such as the quadratic unconstrained binary optimization (QUBO), faster than classical computers. Since many machine learning problems are also NP-hard, we believe adiabatic quantum computers might be instrumental in training machine learning models efficiently in the post Moore’s law era. In order to solve problems on adiabatic quantum computers, they must be formulated as QUBO problems, which is very challenging. In this paper, we formulate the training problems of three machine learning models—linear regression, support vector machine (SVM) and balanced k-means clustering—as QUBO problems, making them conducive to be trained on adiabatic quantum computers. We also analyze the computational complexities of our formulations and compare them to corresponding state-of-the-art classical approaches. We show that the time and space complexities of our formulations are better (in case of SVM and balanced k-means clustering) or equivalent (in case of linear regression) to their classical counterparts.


Author(s):  
John J. Squiers ◽  
Jeffrey E. Thatcher ◽  
David Bastawros ◽  
Andrew J. Applewhite ◽  
Ronald D. Baxter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document