scholarly journals Data automated bag breathing unit for COVID-19 ventilator shortages

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Aleksandra B. Gruslova ◽  
Nitesh Katta ◽  
Andrew G. Cabe ◽  
Scott F. Jenney ◽  
Jonathan W. Valvano ◽  
...  

Abstract Background The COVID-19 pandemic has caused a global mechanical ventilator shortage for treatment of severe acute respiratory failure. Development of novel breathing devices has been proposed as a low cost, rapid solution when full-featured ventilators are unavailable. Here we report the design, bench testing and preclinical results for an 'Automated Bag Breathing Unit' (ABBU). Output parameters were validated with mechanical test lungs followed by animal model testing. Results The ABBU design uses a programmable motor-driven wheel assembled for adult resuscitation bag-valve compression. ABBU can control tidal volume (200–800 ml), respiratory rate (10–40 bpm), inspiratory time (0.5–1.5 s), assist pressure sensing (− 1 to − 20 cm H2O), manual PEEP valve (0–20 cm H2O). All set values are displayed on an LCD screen. Bench testing with lung simulators (Michigan 1600, SmartLung 2000) yielded consistent tidal volume delivery at compliances of 20, 40 and 70 (mL/cm H2O). The delivered fraction of inspired oxygen (FiO2) decreased with increasing minute ventilation (VE), from 98 to 47% when VE was increased from 4 to 16 L/min using a fixed oxygen flow source of 5 L/min. ABBU was tested in Berkshire pigs (n = 6, weight of 50.8 ± 2.6 kg) utilizing normal lung model and saline lavage induced lung injury. Arterial blood gases were measured following changes in tidal volume (200–800 ml), respiratory rate (10–40 bpm), and PEEP (5–20 cm H2O) at baseline and after lung lavage. Physiological levels of PaCO2 (≤ 40 mm Hg [5.3 kPa]) were achieved in all animals at baseline and following lavage injury. PaO2 increased in lavage injured lungs in response to incremental PEEP (5–20 cm H2O) (p < 0.01). At fixed low oxygen flow rates (5 L/min), delivered FiO2 decreased with increased VE. Conclusions ABBU provides oxygenation and ventilation across a range of parameter settings that may potentially provide a low-cost solution to ventilator shortages. A clinical trial is necessary to establish safety and efficacy in adult patients with diverse etiologies of respiratory failure.

2021 ◽  
Author(s):  
Aleksandra Gruslova ◽  
Nitesh Katta ◽  
Andrew G Cabe ◽  
Scott F Jenney ◽  
Jonathan W Valvano ◽  
...  

Abstract Background: The COVID-19 pandemic has caused a global mechanical ventilator shortage for treatment of severe acute respiratory failure. Development of novel breathing devices has been proposed as a low cost, rapid solution when full-featured ventilators are unavailable. Here we report the design, bench testing and preclinical results for an 'Automated Bag Breathing Unit' (ABBU). Output parameters were validated with mechanical test lungs followed by animal model testing.Results: The ABBU design uses a programmable motor-driven wheel assembled for adult resuscitation bag-valve compression. ABBU can control tidal volume (200-800 ml), respiratory rate (10-40 bpm), inspiratory time (0.5-1.5 sec), assist pressure sensing (-1 to -20 cm H2O), manual PEEP valve (0- 20 cm H2O). All set values are displayed on an LCD screen. Bench testing with lung simulators (Michigan 1600, SmartLung 2000) yielded consistent tidal volume delivery at compliances of 20, 40 and 70 (mL/cm H2O). The delivered fraction of inspired oxygen (FiO2) decreased with increasing minute ventilation (VE), from 98% to 47% when VE was increased from 4-16 L/min using a fixed oxygen flow source of 5 L/min. ABBU was tested in Berkshire pigs (n=6, weight of 112±5.8 lb) utilizing normal lung model and saline lavage induced lung injury. Arterial blood gases were measured following changes in tidal volume (200-800 ml), respiratory rate (10-40 bpm), and PEEP (5-20 cm H2O) at baseline and after lung lavage. Physiological levels of PaCO2 (≤40 mm Hg [5.3 kPa]) were achieved in all animals at baseline and following lavage injury. PaO2 increased in lavage injured lungs in response to incremental PEEP (5-20 cm H2O) (p<0.01). At fixed low oxygen flow rates (5 L/min), delivered FiO2 decreased with increased VE.Conclusions: ABBU provides oxygenation and ventilation across a range of parameter settings that may potentially provide a low-cost solution to ventilator shortages. A clinical trial is necessary to establish safety and efficacy in adult patients with diverse etiologies of respiratory failure.


2021 ◽  
Vol 34 ◽  
Author(s):  
Valéria Cabral Neves ◽  
Joyce de Oliveira de Souza ◽  
Adriana Koliski ◽  
Bruno Silva Miranda ◽  
Debora Carla Chong e Silva

Abstract Introduction: The use of a high-flow nasal cannula as an alternative treatment for acute respiratory failure can reduce the need for invasive mechanical ventilation and the duration of hospital stays. Objective: The present study aimed to describe the use of a high-flow nasal cannula in pediatric asthmatic patients with acute respiratory failure and suspected COVID-19. Methods: To carry out this research, data were collected from medical records, including three patients with asthma diagnoses. The variables studied were: personal data (name, age in months, sex, weight, and color), clinical data (physical examination, PRAM score, respiratory rate, heart rate, and peripheral oxygen saturation), diagnosis, history of the current disease, chest, and laboratory radiography (arterial blood gases and reverse-transcriptase polymerase chain reaction). Clinical data were compared before and after using a high-flow nasal cannula. Results: After the application of the therapy, a gradual improvement in heart, respiratory rate, PaO2/FiO2 ratio, and the Pediatric Respiratory Assessment Measure score was observed. Conclusion: The simple and quick use of a high-flow nasal cannula in pediatric patients with asthma can be safe and efficient in improving their respiratory condition and reducing the need for intubation.


1993 ◽  
Vol 11 (6) ◽  
pp. 685-689 ◽  
Author(s):  
John M. Palmisano ◽  
Frank W. Moler ◽  
Catherine Galura ◽  
Mark Gordon ◽  
Joseph R. Custer

2022 ◽  
pp. 1-12
Author(s):  
Dong Xing ◽  
Li Chen ◽  
Lantao Wang ◽  
Jing Jin ◽  
Dong Liu ◽  
...  

BACKGROUND: Stereotactic radiotherapy (SBRT) is widely used in the treatment of thoracic cancer. OBJECTIVE: To evaluate the efficacy of a non-rebreather mask (NRBM) and high-flow nasal cannula (HFNC) in patients with radiation pneumonia complicated with respiratory failure. METHODS: This was a single-center randomized controlled study. Patients admitted to the EICU of the Fourth Hospital of Hebei Medical University were selected and divided into NRBM and HFNC group. Arterial blood gas analysis, tidal volume, respiratory rates and the cases of patients receiving invasive assisted ventilation were collected at 0, 4, 8, 12, 24, 48, and 72 h after admission. RESULTS: (1) The PaO2/FiO2, respiratory rates, and tidal volume between the two groups at 0, 4, 8, 12, 24, 48, and 72 h were different, with F values of 258.177, 294.121, and 134.372, all P< 0.01. These indicators were different under two modes of oxygenation, with F values of 40.671, 168.742, and 55.353, all P< 0.01, also varied with time, with an F value of 7.480, 9.115, and 12.165, all P< 0.01. (2) The incidence of trachea intubation within 72 h between HFNC and NRBM groups (23 [37.1%] vs. 34 [54.0%], P< 0.05). The transition time to mechanical ventilation in the HFNC and NRBM groups (55.3 ± 3.2 h vs. 45.9 ± 3.6 h, P< 0.05). (3) The risk of intubation in patients with an APACHE-II score > 23 was 2.557 times than score ⩽ 23, and the risk of intubation in the NRBM group was 1.948 times more than the HFNC group (P< 0.05). CONCLUSION: Compared with the NRBM, HFNC can improve the oxygenation state of patients with radiation pneumonia complicated with respiratory failure in a short time, and reduce the incidence of trachea intubation within 72 h.


1992 ◽  
Vol 20 (2) ◽  
pp. 177-186 ◽  
Author(s):  
J. M. Stahl ◽  
G. R. Cutfield ◽  
G. A. Harrison

The effect on alveolar oxygen fraction (FAO2) of insufflating oxygen under a mask (or through an inflow nipple provided in the mask) during simulated mouth-to-mask ventilation was investigated using a lung model. A variety of commercially produced masks were evaluated. Two patterns of artificial ventilation were applied: 1. 500 ml tidal volume at 20 breaths per minute, and 2. 900 ml tidal volume at 12 breaths per minute. The ventilating gas mixture was oxygen 16% in nitrous oxide, and oxygen was insufflated at flow rates of 2, 4, 6, 8, 10, 12 or 14 litres per minute. The rate of rise of FAO2 and the equilibrium FAO2 attained were greatest at high oxygen inflow rates. The relationship between oxygen flow and FAO2 was not linear however, and an oxygen flow rate of 10 l/min was adequate to generate FAO2‘s around 50% with either ventilatory pattern. The equilibrium FAO2 achieved was greater with smaller tidal volumes and with larger mask deadspace. We also found that several breaths were required for equilibration of FAO2 during each trial, supporting recommendations that several breaths should be given on commencement of artificial ventilation during cardiopulmonary resuscitation.


Critical Care ◽  
2020 ◽  
Vol 24 (1) ◽  
Author(s):  
Maria Cristina Basile ◽  
Tommaso Mauri ◽  
Elena Spinelli ◽  
Francesca Dalla Corte ◽  
Giacomo Montanari ◽  
...  

Abstract Background Nasal high flow delivered at flow rates higher than 60 L/min in patients with acute hypoxemic respiratory failure might be associated with improved physiological effects. However, poor comfort might limit feasibility of its clinical use. Methods We performed a prospective randomized cross-over physiological study on 12 ICU patients with acute hypoxemic respiratory failure. Patients underwent three steps at the following gas flow: 0.5 L/kg PBW/min, 1 L/kg PBW/min, and 1.5 L/kg PBW/min in random order for 20 min. Temperature and FiO2 remained unchanged. Toward the end of each phase, we collected arterial blood gases, lung volumes, and regional distribution of ventilation assessed by electrical impedance tomography (EIT), and comfort. Results In five patients, the etiology was pulmonary; infective disease characterized seven patients; median PaO2/FiO2 at enrollment was 213 [IQR 136–232]. The range of flow rate during NHF 1.5 was 75–120 L/min. PaO2/FiO2 increased with flow, albeit non significantly (p = 0.064), PaCO2 and arterial pH remained stable (p = 0.108 and p = 0.105). Respiratory rate decreased at higher flow rates (p = 0.014). Inhomogeneity of ventilation decreased significantly at higher flows (p = 0.004) and lung volume at end-expiration significantly increased (p = 0.007), but mostly in the non-dependent regions. Comfort was significantly poorer during the step performed at the highest flow (p < 0.001). Conclusions NHF delivered at rates higher than 60 L/min in critically ill patients with acute hypoxemic respiratory failure is associated with reduced respiratory rate, increased lung homogeneity, and additional positive pressure effect, but also with worse comfort.


2013 ◽  
pp. 6-15
Author(s):  
Federico Lari ◽  
Fabrizio Giostra ◽  
Gianpaolo Bragagni ◽  
Nicola Di Battista

Background: In the last years Non-Invasive Ventilation (NIV) has been playing an important role in the treatment of Acute Respiratory Failure (ARF). Prospective randomised controlled trials have shown improvements in clinical features (respiratory rate, neurological score), pH and arterial blood gases and in particular clinical conditions (Acute Cardiogenic Pulmonary Edema, ACPE, and acute exacerbation of Chronic Obstructive Pulmonary Disease, COPD) systematic reviews and metha-analysis confirm a reduction in the need for intubation and in-hospital mortality compared to standard medical treatment. Methods: The most important techniques of ventilation in spontaneous breathing are: Continuous Positive Airway Pression (CPAP), usually performed with Venturi-like flow generators, and bi-level positive pressure ventilation (an high inspiratory pressure and a low expiratory pressure), performed with ventilators. Facial mask rather than nasal mask is used in ARF: the helmet is useful for prolonged treatments. Results: NIV’s success seems to be determined by early application, correct selection of patients and staff training. Controindications to NIV are: cardiac or respiratory arrest, a respiratory rate < 12 per minute, upper airway obstruction, hemodynamic instability or unstable cardiac arrhythmia, encephalopathy (Kelly score > 3), facial surgery trauma or deformity, inability to cooperate or protect the airway, high risk of aspiration and an inability to clear respiratory secretions. Conclusions: Bi-level ventilation for ARF due to COPD and CPAP or bi-level bentilation for ARF due to ACPE are feasible, safe and effective also in a General Medical ward if the selection of patients, the staff’s training and the monitoring are appropriate: they improve clinical parameters, arterial blood gases, prevent ETI, decrease mortality and hospitalisation. This should encourage the diffusion of NIV in this specific setting.


1994 ◽  
Vol 22 (3) ◽  
pp. 276-280 ◽  
Author(s):  
G. Thomas ◽  
J. Brimacombe

We have assessed the performance of the Dräger Oxylog ventilator at high altitude using a decompression chamber and a lung simulator set to mimic the normal and non-compliant lung. In the normal lung, tidal volume increased by 28% at 2040 metres and by 106% at 9120 metres. A lesser change, but in the opposite direction, occurred in respiratory rate. The net effect was a linear increase in minute volume with altitude. At 2040 and 9144 metres minute volume increased by 13% and by 45%, and rate decreased by 10% and 30% respectively. In the abnormal lung stimulation, similar, but slightly less marked, changes occurred in all variables. These changes are of sufficient magnitude to require frequent observation of tidal volume and respiratory rate during aircraft ascent and descent.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Michela Rauseo ◽  
Lucia Mirabella ◽  
Rosa Roberta Caporusso ◽  
Leonarda Pia Cantatore ◽  
Marco Paolo Perrini ◽  
...  

Abstract Background Pneumonia induced by 2019 Coronavirus (COVID-19) is characterized by hypoxemic respiratory failure that may present with a broad spectrum of clinical phenotypes. At the beginning, patients may have normal lung compliance and be responsive to noninvasive ventilatory support, such as CPAP. However, the transition to more severe respiratory failure - Severe Acute Respiratory Syndrome (SARS-CoV-2), necessitating invasive ventilation is often abrupt and characterized by a severe V/Q mismatch that require cycles of prone positioning. The aim of this case is to report the effect on gas exchange, respiratory mechanics and hemodynamics of tripod (or orthopneic sitting position) used as an alternative to prone position in a patient with mild SARS-CoV-2 pneumonia ventilated with helmet CPAP. Case presentation A 77-year-old awake and collaborating male patient with mild SARS-CoV-2 pneumonia and ventilated with Helmet CPAP, showed sudden worsening of gas exchange without dyspnea. After an unsuccessful attempt of prone positioning, we alternated three-hours cycles of semi-recumbent and tripod position, still keeping him in CPAP. Arterial blood gases (PaO2/FiO2, PaO2, SaO2, PaCO2 and A/a gradient), respiratory (VE, VT, RR) and hemodynamic parameters (HR, MAP) were collected in the supine and tripod position. Cycles of tripod position were continued for 3 days. The patient had a clinically important improvement in arterial blood gases and respiratory parameters, with stable hemodynamic and was successfully weaned and discharged to ward 10 days after pneumonia onset. Conclusions Tripod position during Helmet CPAP can be applied safely in patients with mild SARS-CoV-2 pneumonia, with improvement of oxygenation and V/Q matching, thus reducing the need for intubation.


Sign in / Sign up

Export Citation Format

Share Document