lung simulator
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 10)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kelvin Duong ◽  
Michelle Noga ◽  
Joanna E. MacLean ◽  
Warren H. Finlay ◽  
Andrew R. Martin

Abstract Background For children and adults, the standard treatment for obstructive sleep apnea is the delivery of continuous positive airway pressure (CPAP). Though effective, CPAP masks can be uncomfortable to patients, contributing to adherence concerns. Recently, nasal high flow (NHF) therapy has been investigated as an alternative, especially in CPAP-intolerant children. The present study aimed to compare and contrast the positive airway pressures and expired gas washout generated by NHF versus CPAP in child nasal airway replicas. Methods NHF therapy was investigated at a flow rate of 20 L/min and compared to CPAP at 5 cmH2O and 10 cmH2O for 10 nasal airway replicas, built from computed tomography scans of children aged 4–8 years. NHF was delivered with three different high flow nasal cannula models provided by the same manufacturer, and CPAP was delivered with a sealed nasal mask. Tidal breathing through each replica was imposed using a lung simulator, and airway pressure at the trachea was recorded over time. For expired gas washout measurements, carbon dioxide was injected at the lung simulator, and end-tidal carbon dioxide (EtCO2) was measured at the trachea. Changes in EtCO2 compared to baseline values (no intervention) were assessed. Results NHF therapy generated an average positive end-expiratory pressure (PEEP) of 5.17 ± 2.09 cmH2O (mean ± SD, n = 10), similar to PEEP of 4.95 ± 0.03 cmH2O generated by nominally 5 cmH2O CPAP. Variation in tracheal pressure was higher between airway replicas for NHF compared to CPAP. EtCO2 decreased from baseline during administration of NHF, whereas it increased during CPAP. No statistical difference in tracheal pressure nor EtCO2 was found between the three high flow nasal cannulas. Conclusion In child airway replicas, NHF at 20 L/min generated average PEEP similar to CPAP at 5 cm H2O. Variation in tracheal pressure was higher between airway replicas for NHF than for CPAP. The delivery of NHF yielded expired gas washout, whereas CPAP impeded expired gas washout due to the increased dead space of the sealed mask.


2021 ◽  
Vol 8 ◽  
Author(s):  
Connor Stahl ◽  
Kevin Frederick ◽  
Sachin Chaudhary ◽  
Christopher J. Morton ◽  
Douglas Loy ◽  
...  

Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic can spread through virus-containing aerosols ( ≤ 5 μm) and larger airborne droplets. Quantifying filtration efficiency of different kinds of masks and linings for aerosols that fall within the most penetrating particle size (80-400 nm) is critical to limiting viral transmission. The objective of our experiment was to compare the “real-world” filtering efficiency of different face masks for fine aerosols (350 nm) in laboratory simulations.Methods: We performed a simulated bench test that measured the filtering efficiency of N95 vs. N99 masks with elastomeric lining in relation to baseline (“background”) aerosol generation. A mannequin head was placed within a chamber and was attached to an artificial lung simulator. Particles of known size (350 ± 6 nm aerodynamic diameter) were aerosolized into the chamber while simulating breathing at physiological settings of tidal volume, respiratory rate, and airflow. Particle counts were measured between the mannequin head and the lung simulator at the tracheal airway location.Results: Baseline particle counts without a filter (background) were 2,935 ± 555 (SD) cm−3, while the N95 (1348 ± 92 cm−3) and N99 mask with elastomeric lining (279 ± 164 cm−3; p <0.0001) exhibit lower counts due to filtration.Conclusion: The filtration efficiency of the N95 (54.1%) and N99 (90.5%) masks were lower than the filtration efficiency rating. N99 masks with elastomeric lining exhibit greater filtration efficiency than N95 masks without elastomeric lining and may be preferred to contain the spread of SARS-CoV-2 infection.


2021 ◽  
Vol 11 (9) ◽  
pp. 3745
Author(s):  
Richard Pasteka ◽  
Joao Pedro Santos da Costa ◽  
Nelson Barros ◽  
Radim Kolar ◽  
Mathias Forjan

During mechanical ventilation, a disparity between flow, pressure and volume demands of the patient and the assistance delivered by the mechanical ventilator often occurs. This paper introduces an alternative approach of simulating and evaluating patient–ventilator interactions with high fidelity using the electromechanical lung simulator xPULM™. The xPULM™ approximates respiratory activities of a patient during alternating phases of spontaneous breathing and apnea intervals while connected to a mechanical ventilator. Focusing on different triggering events, volume assist-control (V/A-C) and pressure support ventilation (PSV) modes were chosen to test patient–ventilator interactions. In V/A-C mode, a double-triggering was detected every third breathing cycle, leading to an asynchrony index of 16.67%, which is classified as severe. This asynchrony causes a significant increase of peak inspiratory pressure (7.96 ± 6.38 vs. 11.09 ± 0.49 cmH2O, p < 0.01)) and peak expiratory flow (−25.57 ± 8.93 vs. 32.90 ± 0.54 L/min, p < 0.01) when compared to synchronous phases of the breathing simulation. Additionally, events of premature cycling were observed during PSV mode. In this mode, the peak delivered volume during simulated spontaneous breathing phases increased significantly (917.09 ± 45.74 vs. 468.40 ± 31.79 mL, p < 0.01) compared to apnea phases. Various dynamic clinical situations can be approximated using this approach and thereby could help to identify undesired patient–ventilation interactions in the future. Rapidly manufactured ventilator systems could also be tested using this approach.


Author(s):  
Richard Pasteka ◽  
Joao Pedro Santos da Costa ◽  
Nelson Barros ◽  
Radim Kolar ◽  
Mathias Forjan

During mechanical ventilation, a disparity between flow, pressure or volume demands of the patient and the assistance delivered by the mechanical ventilator often occurs. Asynchrony effect and ventilator performance are frequently studied from ICU datasets or using commercially available lung simulators and test lungs. This paper introduces an alternative approach of simulating and evaluating patient-ventilator interactions with high fidelity using the electro-mechanical lung simulator xPULM&trade; under selected conditions. The xPULM&trade; approximates respiratory activities of a patient during alternating phases of spontaneous breathing and apnoea intervals while connected to a mechanical ventilator. Focusing on different triggering events, volume assist-controlled (V/A-C) and pressure support ventilation (PSV) modes were chosen to test patient-ventilator interactions. In V/A-C mode a double-triggering was detected every third breathing cycle leading to an asynchrony index of 16.67%, being classified as severe. This asynchrony causes a major increase of Peak Inspiratory Pressure PIP = 12.80 &plusmn; 1.39 cmH2O and Peak Expiratory Flow PEF = -18.33 &plusmn; 1.13 L/min when compared to synchronous phases of the breathing simulation. Additionally, events of premature cycling were observed during PSV mode. In this mode, the peak delivered volume during simulated spontaneous breathing phases almost doubles compared to apnoea phases. The presented approach demonstrates the possibility of simulating and evaluating disparities in fundamental ventilation characteristics caused by double-triggering and premature cycling under V/A-C and PSV ventilation modes. Various dynamic clinical situations can be approximated and could help to identify undesired patient-ventilation interactions in the future. Rapidly manufactured ventilator systems could also be tested using this approach.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Joana Berger-Estilita ◽  
Matthias Haenggi ◽  
Daniel Ott ◽  
David Berger

Abstract Background The functional residual capacity (FRC) determines the oxygenating capacity of the lung and is heavily affected in the clinical context of the acute respiratory distress syndrome. Nitrogen-wash-in/wash-out methods have been used to measure FRC. These methods have rarely been validated against exactly known volumes. The aim of the study was to assess the accuracy and precision of the N2 washout/washin method in measuring FRC, by comparing it with set volumes in a lung simulator. Methods We conducted a diagnostic bench study in the Intensive Care Unit and Radiology Department of a tertiary hospital in Switzerland. Using a fully controllable high fidelity lung simulator (TestChest®), we set the functional residual capacity at 1500 ml, 2000 ml and 2500 ml and connected to the GE Carestation respirator, which includes the nitrogen washout/washin technique (INview™ tool). FRC was then set to vary by different levels of PEEP (5, 8, 12 and 15 cmH2O). The main outcome measures were bias and precision of the TestChest® when compared to the results from the washout/washin technique, according to the results of a Bland Altman Analysis. We verified our findings with volumetric computed tomography. Results One hundred and thirty-five nitrogen-wash-in/wash-out measurements were taken at three levels of FIO2 (0.4, 0.5, 0.6). The CT volumetry reproduced the set end-expiratory volumes at the Simulator with a bias of 4 ml. The nitrogen-wash-in/wash-out method had a bias of 603 ml with acceptable limits of agreement (95% CI 252 to − 953 ml). Changes were detected with a concordance rate of 97%. Conclusions We conclude that the TestChest® simulator is an accurate simulation tool, concerning the simulation of lung volumes. The nitrogen wash-in/wash out method correlated positively with FRC changes, despite a relatively large bias in absolute measurements. The reference volumes in the lung simulator verified with CT volumetry were very close to their expected values. The reason for the bias could not be determined.


2020 ◽  
Author(s):  
Takanobu Hirosawa ◽  
Yukinori Harada ◽  
Kohei Ikenoya ◽  
Shintaro Kakimoto ◽  
Yuki Aizawa ◽  
...  

BACKGROUND The urgent need for telemedicine has become clear situation in the pandemic of the coronavirus disease 2019. To facilitate telemedicine, the development and improvement of remote examination systems are required. A system combining an electronic stethoscope and Bluetooth connectivity is a promising option for remote auscultation in clinics and hospitals. However, the utility of such systems remains unknown. OBJECTIVE This study was conducted to assess the utility of real-time auscultation, using a Bluetooth-connected electronic stethoscope compared to that of classical auscultation, using a lung simulator. METHODS This was an open-label randomized controlled trial, including senior residents and faculty in the department of general internal medicine of a university hospital. The only exclusion criterion was a refusal to participate. All participants attended a tutorial session, in which they listened to 15 lung sounds on the lung simulator using a classic stethoscope and were told the correct classification. Thereafter, participants were randomly assigned to either the real-time remote auscultation group (intervention group) or the classical auscultation group (control group), for test sessions. In the test sessions, participants had to classify a series of ten lung sounds. The intervention group listened to the lung sounds remotely, using the electronic stethoscope, a Bluetooth transmitter, and a wireless, noise-canceling, stereo headset. The control group listened to the lung sounds directly using a traditional stethoscope. The primary outcome was the test score, and the secondary outcomes were the rates of correct answers for each lung sound. The two groups were compared using the Fisher exact test. RESULTS In total, 20 participants were included; eleven and nine were assigned to the intervention and control groups, respectively. There was no difference in age (P=.25), sex (P=.82), and years from graduation (P=.15) between the two groups. The overall test score in the intervention group (80/110, 72.7%) was not different from that in the control group (71/90, 78.9%) (P=.32). The only lung sound for which the correct answer rate differed between groups was that of pleural friction rubs (P=.03); it was lower in the intervention group (3/11, 27%) than in the control group (7/9, 78%,). CONCLUSIONS The utility of a real-time remote auscultation system using a Bluetooth-connected electronic stethoscope was comparable to that of direct auscultation using a classic stethoscope, except for classification of pleural friction rubs. CLINICALTRIAL UMIN-CTR UMIN000040828; https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000046222.


2020 ◽  
Author(s):  
Shahroor Sarit Hadar ◽  
Sarouf Yarden ◽  
Oz-Ari Leav ◽  
M Gilad ◽  
K. Joseph ◽  
...  

AbstractObjectiveIn mass crisis setting such as the COVID-19 pandemic, the number of patients requiring invasive ventilation may exceed the number of available ventilators. This challenge led to the concept of splitting ventilator between several patients, which aroused interest as well as a strong opposition from multiple professional societies (The joint statement)1.Establishment of a safe ventilator splitting setup which enables monitoring and control of each ventilated patient would be a desirable ability. Achieving independency between the Co-vent patients would enable effective coping with different individual clinical scenarios and broaden the pairing possibilities of patients connected to a single ventilator. We conducted an experiment to determine if our designed setup achieves these goals.MethodsWe utilized a double two limbed modified ventilator circuits which were connected to dual lung simulators. Adding readily available pressure sensors (transducers), PEEP valves, flow control valves, one-way (check) valves and HME filters made the circuit safe enough and suitable for our goals. We first examined a single lung simulator establishing the baseline set parameters, while monitoring ventilator measures as Tidal Volume. The initial ventilator setting we chose was a controlled mandatory ventilation mode with a PIP (peak inspiratory pressure) of 25cmH2O, PEEP (Positive End Expiratory Pressure) of 5 cmH2O. In pressure control set at 20 cmH2O, the recorded mean TV(tidal volume) was 1000 mL (approximately 500 mL/lung simulator) with an average MV(minute ventilation) of 13 L/min (or 6.5 L/min/lung simulator). After examining the system with the dual modified circuits attached, and obtaining all the ventilation parameters, we simulated several clinical scenarios. We simulated clinical events such as: partial or full obstruction, disconnection, air leak and compliance differentials, which occur frequently on a ventilation course. Thus, it is a paramount system demand to keep undisturbed ventilation to the Co-vent patient A, while being challenged by patient B.ResultsThe adaptive split ventilator setup yields increased safety, monitoring, and controls ventilation parameters successfully for each connected simulated patient (using lung simulators).It also enables coping with several common clinical scenarios on a ventilation course, by allowing the care provider to control PIP and PEEP of each Co-Vent patient.ConclusionIn a mass crisis setting, when there is a shortage of ventilators supply, and as a last resort, this setup can be a viable option to act upon. This experiment demonstrates the ability of the split ventilator to ventilate dual lung simulators with increased safety, monitoring and ventilation pressures control of each simulated patient. This split ventilator kept supporting a simulated patient with undisturbed parameters while the CO-vent patient was simulated to be disconnected, having an air leak, or exhibiting lung compliance deterioration. To the best of our knowledge, this is the first time a split ventilator setup demonstrates these capabilities. Our pilot experiment suggests a significant potential of expanding the ventilator support resources, and is especially relevant during COVID-19 outbreak. Since this setup has not been used in a clinical setting yet, further research should be conducted to explore the safety limits and the capabilities of this model.


2020 ◽  
Vol 65 (9) ◽  
pp. 1339-1345 ◽  
Author(s):  
Stephen C John ◽  
Anna V John ◽  
Albert W Moss ◽  
Peter A Gustafson ◽  
Luis Fernando-Silva ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Richard Pasteka ◽  
Mathias Forjan ◽  
Stefan Sauermann ◽  
Andreas Drauschke

AbstractSimulation models in respiratory research are increasingly used for medical product development and testing, especially because in-vivo models are coupled with a high degree of complexity and ethical concerns. This work introduces a respiratory simulation system, which is bridging the gap between the complex, real anatomical environment and the safe, cost-effective simulation methods. The presented electro-mechanical lung simulator, xPULM, combines in-silico, ex-vivo and mechanical respiratory approaches by realistically replicating an actively breathing human lung. The reproducibility of sinusoidal breathing simulations with xPULM was verified for selected breathing frequencies (10–18 bpm) and tidal volumes (400–600 ml) physiologically occurring during human breathing at rest. Human lung anatomy was modelled using latex bags and primed porcine lungs. High reproducibility of flow and pressure characteristics was shown by evaluating breathing cycles (nTotal = 3273) with highest standard deviation |3σ| for both, simplified lung equivalents ($${{\boldsymbol{\mu }}}_{\dot{{\bf{V}}}}$$µV̇ = 23.98 ± 1.04 l/min, μP = −0.78 ± 0.63 hPa) and primed porcine lungs ($${{\boldsymbol{\mu }}}_{\dot{{\bf{V}}}}$$µV̇ = 18.87 ± 2.49 l/min, μP = −21.13 ± 1.47 hPa). The adaptability of the breathing simulation parameters, coupled with the use of porcine lungs salvaged from a slaughterhouse process, represents an advancement towards anatomically and physiologically realistic modelling of human respiration.


2019 ◽  
Vol 52 (27) ◽  
pp. 434-439
Author(s):  
Oleksii Kozynets ◽  
Andreas Drauschke

Sign in / Sign up

Export Citation Format

Share Document