scholarly journals How parameter specification of an Earth system model of intermediate complexity influences its climate simulations

Author(s):  
Yuhan Shi ◽  
Wei Gong ◽  
Qingyun Duan ◽  
Jackson Charles ◽  
Cunde Xiao ◽  
...  
2018 ◽  
Vol 10 (6) ◽  
pp. 1245-1265 ◽  
Author(s):  
A. Gettelman ◽  
P. Callaghan ◽  
V. E. Larson ◽  
C. M. Zarzycki ◽  
J. T. Bacmeister ◽  
...  

2009 ◽  
Vol 34 (1) ◽  
pp. 151-151
Author(s):  
Marisa Montoya ◽  
Alexa Griesel ◽  
Anders Levermann ◽  
Juliette Mignot ◽  
Matthias Hofmann ◽  
...  

2009 ◽  
Vol 5 (2) ◽  
pp. 245-258 ◽  
Author(s):  
R. Calov ◽  
A. Ganopolski ◽  
C. Kubatzki ◽  
M. Claussen

Abstract. We investigate glacial inception and glacial thresholds in the climate-cryosphere system utilising the Earth system model of intermediate complexity CLIMBER-2, which includes modules for atmosphere, terrestrial vegetation, ocean and interactive ice sheets. The latter are described by the three-dimensional polythermal ice-sheet model SICOPOLIS. A bifurcation which represents glacial inception is analysed with two different model setups: one setup with dynamical ice-sheet model and another setup without it. The respective glacial thresholds differ in terms of maximum boreal summer insolation at 65° N (hereafter referred as Milankovitch forcing (MF)). The glacial threshold of the configuration without ice-sheet dynamics corresponds to a much lower value of MF compared to the full model. If MF attains values only slightly below the aforementioned threshold there is fast transient response. Depending on the value of MF relative to the glacial threshold, the transient response time of inland-ice volume in the model configuration with ice-sheet dynamics ranges from 10 000 to 100 000 years. Due to these long response times, a glacial threshold obtained in an equilibrium simulation is not directly applicable to the transient response of the climate-cryosphere system to time-dependent orbital forcing. It is demonstrated that in transient simulations just crossing of the glacial threshold does not imply large-scale glaciation of the Northern Hemisphere. We found that in transient simulations MF has to drop well below the glacial threshold determined in an equilibrium simulation to initiate glacial inception. Finally, we show that the asynchronous coupling between climate and inland-ice components allows one sufficient realistic simulation of glacial inception and, at the same time, a considerable reduction of computational costs.


2018 ◽  
Vol 10 (5) ◽  
pp. 1127-1149 ◽  
Author(s):  
P. Swapna ◽  
R. Krishnan ◽  
N. Sandeep ◽  
A. G. Prajeesh ◽  
D. C. Ayantika ◽  
...  

2019 ◽  
Author(s):  
Takasumi Kurahashi-Nakamura ◽  
André Paul ◽  
Guy Munhoven ◽  
Ute Merkel ◽  
Michael Schulz

Abstract. We developed a coupling scheme for the Community Earth System Model version 1.2 (CESM1.2) and the Model of Early Diagenesis in the Upper Sediment of Adjustable complexity (MEDUSA), and explored the effects of the coupling on solid components in the upper sediment and on bottom seawater chemistry by comparing the coupled model's behaviour with that of the uncoupled CESM having a simplified treatment of sediment processes. CESM is a fully-coupled atmosphere-ocean-sea ice-land model and its ocean component (the Parallel Ocean Program version 2, POP2) includes a biogeochemical component (BEC). MEDUSA was coupled to POP2 in an off-line manner so that each of the models ran separately and sequentially with regular exchanges of necessary boundary condition fields. This development was done with the ambitious aim of a future application for long-term (spanning a full glacial cycle; i.e., ~ 105 years) climate simulations with a state-of-the-art comprehensive climate model including the carbon cycle, and was motivated by the fact that until now such simulations have been done only with less-complex climate models. We found that the sediment-model coupling already had non-negligible immediate advantages for ocean biogeochemistry in millennial-time-scale simulations. First, the MEDUSA-coupled CESM outperformed the uncoupled CESM in reproducing an observation-based global distribution of sediment properties, especially for organic carbon and opal. Thus, the coupled model is expected to act as a better bridge between climate dynamics and sedimentary data, which will provide another measure of model performance. Second, in our experiments, the MEDUSA-coupled model and the uncoupled model had a difference of 0.2‰ or larger in terms of δ13C of bottom water over large areas, which implied potential significant model biases for bottom seawater chemical composition due to a different way of sediment treatment. Such a model bias would be a fundamental issue for paleo model–data comparison often relying on data derived from benthic foraminifera.


Sign in / Sign up

Export Citation Format

Share Document