scholarly journals Development of a global sediment dynamics model

Author(s):  
Misako Hatono ◽  
Kei Yoshimura

Abstract Sediment dynamics play an important role in various aspects of earth system modeling. In this study, we developed a global sediment dynamics model that considers suspended sediment and bedload at short timescales. We validated suspended sediment from four observation stations in the Amazon River basin and over 60 observation stations from around the world based on a variable criteria such as availability of data samples. Our model was able to effectively reproduce seasonality and spatial distribution of suspended sediment flow. However, our global estimate of approximately 4 Bt/a was significantly lower than previous estimates; therefore, we discuss potential causes of this discrepancy, including target time period and discrepancies with previous extrapolated methods. Our newly developed sediment dynamics model could provide a better understanding of global sediment transfer and contributes to various related research fields such as coastal modeling and natural disasters.

Author(s):  
Nguyen Ngoc Tien ◽  
Dinh Van Uu ◽  
Nguyen Tho Sao ◽  
Do Huy Cuong ◽  
Nguyen Trung Thanh ◽  
...  

GPS Solutions ◽  
2021 ◽  
Vol 25 (3) ◽  
Author(s):  
Anna Klos ◽  
Henryk Dobslaw ◽  
Robert Dill ◽  
Janusz Bogusz

AbstractWe examine the sensitivity of the Global Positioning System (GPS) to non-tidal loading for a set of continental Eurasia permanent stations. We utilized daily vertical displacements available from the Nevada Geodetic Laboratory (NGL) at stations located at least 100 km away from the coast. Loading-induced predictions of displacements of earth’s crust are provided by the Earth-System-Modeling Group of the GFZ (ESMGFZ). We demonstrate that the hydrological loading, supported by barystatic sea-level changes to close the global mass budget (HYDL + SLEL), contributes to GPS displacements only in the seasonal band. Non-tidal atmospheric loading, supported by non-tidal oceanic loading (NTAL + NTOL), correlates positively with GPS displacements for almost all time resolutions, including non-seasonal changes from 2 days to 5 months, which are often considered as noise, intra-seasonal and seasonal changes with periods between 4 months and 1.4 years, and, also, inter-annual signals between 1.1 and 3.0 years. Correcting the GPS vertical displacements by NTAL leads to a reduction in the time series variances, evoking a whitening of the GPS stochastic character and a decrease in the standard deviation of noise. Both lead, on average, to an improvement in the uncertainty of the GPS vertical velocity by a factor of 2. To reduce its impact on the GPS displacement time series, we recommend that NTAL is applied at the observation level during the processing of GPS observations. HYDL might be corrected at the observation level or remain in the data and be applied at the stage of time series analysis.


2014 ◽  
Vol 79 ◽  
pp. 509-519 ◽  
Author(s):  
Daniel Unverricht ◽  
Thanh Cong Nguyen ◽  
Christoph Heinrich ◽  
Witold Szczuciński ◽  
Niko Lahajnar ◽  
...  

2008 ◽  
Vol 90 (4) ◽  
pp. 299-313 ◽  
Author(s):  
Tim Stott ◽  
Anne‐marie Nuttall ◽  
Nick Eden ◽  
Katie Smith ◽  
Darren Maxwell

2018 ◽  
Vol 22 (6) ◽  
pp. 3421-3434 ◽  
Author(s):  
Anna Costa ◽  
Daniela Anghileri ◽  
Peter Molnar

Abstract. We analyse the control of hydroclimatic factors on suspended sediment concentration (SSC) in Alpine catchments by differentiating among the potential contributions of erosion and suspended sediment transport driven by erosive rainfall, defined as liquid precipitation over snow-free surfaces, ice melt from glacierized areas, and snowmelt on hillslopes. We account for the potential impact of hydropower by intercepting sediment fluxes originated in areas diverted to hydropower reservoirs, and by considering the contribution of hydropower releases to SSC. We obtain the hydroclimatic variables from daily gridded datasets of precipitation and temperature, implementing a degree-day model to simulate spatially distributed snow accumulation and snow–ice melt. We estimate hydropower releases by a conceptual approach with a unique virtual reservoir regulated on the basis of a target-volume function, representing normal reservoir operating conditions throughout a hydrological year. An Iterative Input Selection algorithm is used to identify the variables with the highest predictive power for SSC, their explained variance, and characteristic time lags. On this basis, we develop a hydroclimatic multivariate rating curve (HMRC) which accounts for the contributions of the most relevant hydroclimatic input variables mentioned above. We calibrate the HMRC with a gradient-based nonlinear optimization method and we compare its performance with a traditional discharge-based rating curve. We apply the approach in the upper Rhône Basin, a large Swiss Alpine catchment heavily regulated by hydropower. Our results show that the three hydroclimatic processes – erosive rainfall, ice melt, and snowmelt – are significant predictors of mean daily SSC, while hydropower release does not have a significant explanatory power for SSC. The characteristic time lags of the hydroclimatic variables correspond to the typical flow concentration times of the basin. Despite not including discharge, the HMRC performs better than the traditional rating curve in reproducing SSC seasonality, especially during validation at the daily scale. While erosive rainfall determines the daily variability of SSC and extremes, ice melt generates the highest SSC per unit of runoff and represents the largest contribution to total suspended sediment yield. Finally, we show that the HMRC is capable of simulating climate-driven changes in fine sediment dynamics in Alpine catchments. In fact, HMRC can reproduce the changes in SSC in the past 40 years in the Rhône Basin connected to air temperature rise, even though the simulated changes are more gradual than those observed. The approach presented in this paper, based on the analysis of the hydroclimatic control of suspended sediment concentration, allows the exploration of climate-driven changes in fine sediment dynamics in Alpine catchments. The approach can be applied to any Alpine catchment with a pluvio-glacio-nival hydrological regime and adequate hydroclimatic datasets.


Sign in / Sign up

Export Citation Format

Share Document