atmospheric loading
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 18)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Francesco Pintori ◽  
Enrico Serpelloni ◽  
Adriano Gualandi

Abstract. We study time series of vertical ground displacements from continuous GNSS stations to investigate the spatial and temporal contribution of different geophysical processes to the time-varying displacements that are superimposed on vertical linear trends across the European Alps. We apply a multivariate statistics-based blind source separation algorithm to both GNSS displacement time series and to ground displacements associated with atmospheric and hydrological loading processes, as obtained from global reanalysis models. This allows us to associate each retrieved geodetic vertical deformation signal with a corresponding forcing process. Atmospheric loading is the most important one, reaching amplitudes larger than 2 cm. Besides atmospheric loading, seasonal displacements with amplitudes of about 1 cm are associated with temperature-related processes and with hydrological loading. We find that both temperature and hydrological loading cause peculiar spatial features of GNSS ground displacements. For example, temperature-related seasonal displacements show different behaviour at sites in the plains and in the mountains. Atmospheric and hydrological loading, besides the first-order spatially uniform feature, are associated also with NS and EW displacement gradients. We filter out signals associated with non-tectonic deformation from the raw time series to study their impact on both the estimated noise and linear rates in the vertical direction. While the impact on rates appears rather limited, given also the long-time span of the time-series considered in this work, the uncertainties estimated from filtered time-series assuming a power law + white noise model are significantly reduced, with an important increase in white noise contributions to the total noise budget. Finally, we present the filtered velocity field and show how vertical ground velocities are positively correlated with topographic features of the Alps.


2021 ◽  
Author(s):  
Ya Gao ◽  
Chaochao Gao

Abstract. Volcanic radiative forcing reconstruction is an important part of paleoclimate simulation and attribution efforts, and the conversion factor used to transfer ice core-based sulfate observation into stratospheric volcanic aerosol loading (LTD factor) is critical for such reconstruction. A Pinatubo-based LTD combing observations of nuclear tomb test debris in Greenland and volcanic sulfate aerosols in Antarctic was derived and widely applied in the CMIP5 and CMIP6 simulations. This study revisits the LTD factor, by using 58 polar ice core records of volcanic depositions and a Monte Carlo sampling model. A set of Tambora-based LTDs with associated uncertainties are obtained, which corrects the bias of over-representing the west Antarctic. New LTDs for Pinatubo and Agung are calculated using 18 and 24 Antarctic ice core observations, respectively, and the uncertainties are evaluated against the Monte Carlo characterization with varying ice core numbers. The comparison of Southern Hemispheric LTD among Tambora, Pinatubo and Agung suggests that, the conversion factor may vary significantly among different eruptions. Even larger uncertainty is revealed when compare the ice-core-based conversion factor with the model results. Both results suggest systematic and stochastic causes that are difficult to anticipate, and call for precaution when single conversion factor is used for reconstruction.


GPS Solutions ◽  
2021 ◽  
Vol 25 (3) ◽  
Author(s):  
Anna Klos ◽  
Henryk Dobslaw ◽  
Robert Dill ◽  
Janusz Bogusz

AbstractWe examine the sensitivity of the Global Positioning System (GPS) to non-tidal loading for a set of continental Eurasia permanent stations. We utilized daily vertical displacements available from the Nevada Geodetic Laboratory (NGL) at stations located at least 100 km away from the coast. Loading-induced predictions of displacements of earth’s crust are provided by the Earth-System-Modeling Group of the GFZ (ESMGFZ). We demonstrate that the hydrological loading, supported by barystatic sea-level changes to close the global mass budget (HYDL + SLEL), contributes to GPS displacements only in the seasonal band. Non-tidal atmospheric loading, supported by non-tidal oceanic loading (NTAL + NTOL), correlates positively with GPS displacements for almost all time resolutions, including non-seasonal changes from 2 days to 5 months, which are often considered as noise, intra-seasonal and seasonal changes with periods between 4 months and 1.4 years, and, also, inter-annual signals between 1.1 and 3.0 years. Correcting the GPS vertical displacements by NTAL leads to a reduction in the time series variances, evoking a whitening of the GPS stochastic character and a decrease in the standard deviation of noise. Both lead, on average, to an improvement in the uncertainty of the GPS vertical velocity by a factor of 2. To reduce its impact on the GPS displacement time series, we recommend that NTAL is applied at the observation level during the processing of GPS observations. HYDL might be corrected at the observation level or remain in the data and be applied at the stage of time series analysis.


2021 ◽  
Author(s):  
Lorena Moreira ◽  
Anny Cazenave

<p>The Global Mean Sea Level (GMSL) is rising at a rate of 3.3 mm/year over the altimetry era but at regional scale the behaviour is quite different. In some regions, the sea level rates are up to 2-3 times the global mean rate. The mechanisms behind these discrepancies are explained through the differences in the processes that affect the sea level at different scales. The concept of budget is used to express the superposition of signals that contribute to the change in sea level. At regional scale, apart from the contributions from steric and ocean mass components which are also present in the GMSL budget, the budget is also affected by atmospheric loading component and the static factors component. The static terms (also called fingerprints) include solid Earth’s deformations and gravitational changes in response to mass redistributions caused by land ice melt and land water storage changes. The goal of this study is to detect the fingerprints of the static factors using satellite altimetry-based sea level grids corrected for steric and ocean mass effects. Our preliminary results show a statistically significant correlation between observed and modelled fingerprints in some regions of the oceanic basins.</p>


2021 ◽  
Vol 13 (2) ◽  
pp. 279 ◽  
Author(s):  
Maosheng Zhou ◽  
Xin Liu ◽  
Jiajia Yuan ◽  
Xin Jin ◽  
Yupeng Niu ◽  
...  

The classical harmonic analysis (CHA) method only can be used to obtain the harmonic constants (amplitude and phase) of ocean tide loading displacement (OTLD). In fact, there are significant seasonal variations in the harmonic constants of OTLD. A moving harmonic analysis (MHA) method is proposed, which can effectively capture the seasonal variation of OTLD parameters. Based on 5 years of kinematic coordinate time series in direction U of six Global Positioning System (GPS) stations in Hong Kong, the MHA method is used to explore the seasonal variation of the OTLD parameters of the 6 principal tidal constituents (M2, S2, N2, K1, O1, Q1). The influence of mass loading on the seasonal variation of OTLD parameters is analyzed. The results show that there are obviously seasonal variations in OTLD parameters of the 6 principal tidal constituents in Hong Kong. The OTLD’s amplitude’s changes of the 6 principal tidal constituents are around 4–25.1% and the oscillation ranges of OTLD’s phase parameters vary from 8.8° to 20.4°. Among the seasonal variations of OTLD parameters, the annual signal, the semi-annual signal, and the ter-annual signal are the most significant. By analyzing the influence of atmospheric loading on the seasonal variation of OTLD parameters, it is found that atmospheric loading has certain contribution to the seasonal variation of OTLD parameters. Hydrological loading and non-tidal ocean loading have little influence on the seasonal variation of OTLD parameters.


2021 ◽  
Author(s):  
I. O. Skakun ◽  
V. V. Mitrikas ◽  
V. V. Ianishevskii

AbstractThe paper reviews models of tidal and non-tidal variations of the Earth's gravitational field. Proposing an algorithm for the estimation of the Stokes coefficients based on inter-satellite measurements of low-orbit spacecrafts. By processing measurements of the GRACE mission, we obtained experimental estimates of gravity field monthly variations. The analysis of these values was carried out by calculating the change in the equivalent water height for a given area.


Sign in / Sign up

Export Citation Format

Share Document