scholarly journals Evaluation of the deformation shape of a balloon-type dielectric elastomer actuator prestretched with water pressure

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Natsumi Koike ◽  
Takeshi Hayakawa

AbstractIn this study, we evaluated the deformation shape of a balloon-type dielectric elastomer actuator (DEA) that has been prestretched with water pressure. We fabricated the DEA with poly(dimethylsiloxane) (PDMS) as the elastomeric material and carbon grease as the electrode. We derived analytical solutions for the deformation of the DEA based on structural mechanical models. Additionally, we compared the deformation shapes obtained by theoretical analysis and experimental results. Our model can partially predict the deformation shape of the DEA with good accuracy. In addition, we discuss the applicable range of the theoretical model and error relative to the experimental results.

1996 ◽  
Vol 10 (28) ◽  
pp. 1379-1387 ◽  
Author(s):  
GEMUNU H. GUNARATNE ◽  
MOHAMED EL-HAMDI ◽  
MICHAEL GORMAN ◽  
KAY A. ROBBINS

Theoretical analysis and experimental results are presented to demonstrate the universal characteristics of parity-breaking bifurcations for pattern-forming systems in a circular domain. Ordered patterns of concentric rings of cells which form in a premixed flame on a circular burner at low pressure are used to demonstrate these ideas. Cells belonging to stationary rings are symmetric, while those of rotating rings are not. The important characteristics of the experimental results are reproduced in a theoretical model which can be numerically integrated in polar coordinates. Normal form equations for the Fourier–Bessel coefficients of this model lead to parity breaking.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Jie Fan ◽  
Jihuan He

Air permeability in hierarchic porous media does not obey Fick's equation or its modification because fractal objects have well-defined geometric properties, which are discrete and discontinuous. We propose a theoretical model dealing with, for the first time, a seemingly complex air permeability process using fractal derivative method. The fractal derivative model has been successfully applied to explain the novel air permeability phenomenon of cocoon. The theoretical analysis was in agreement with experimental results.


2020 ◽  
Vol 12 (2) ◽  
pp. 33
Author(s):  
Elio B. Porcelli ◽  
Omar R. Alves ◽  
Victo S. Filho

In this work, we measured the magnitude of forces raised from the operation of symmetrical capacitor devices working in high electric potentials. Our experimental measurements were realized with basis on an improved setup which aimed significant reduction of ionic wind by means of an efficient shield. We observed small variations of the device inertia within an accurate range and we confirmed with good accuracy that the experimental results can be explained by a generalized quantum entanglement hypothesis which provides us a theoretical model for a macroscopic dipole force raised by the myriad of microscopic dipoles constituting the capacitor. The new results corroborated the positive results of previous experiments and also indicate the validity of our theoretical forecast.


2000 ◽  
Vol 123 (2) ◽  
pp. 262-267 ◽  
Author(s):  
R. P. Glovnea ◽  
H. A. Spikes

This paper presents a theoretical model for the behavior of elastohydrodynamic films subjected to transient speed conditions, based on Grubin’s analytical solution for elastohydrodynamic lubrication. This model is applied to predict film thickness in high deceleration conditions. The model’s predictions are compared with the experimental results presented in an accompanying paper entitled “Elastohydrodynamic Film Collapse During Rapid Deceleration. Part I: Experimental Results.”


2020 ◽  
Vol 14 (4) ◽  
pp. 7396-7404
Author(s):  
Abdul Malek Abdul Wahab ◽  
Emiliano Rustighi ◽  
Zainudin A.

Various complex shapes of dielectric electro-active polymer (DEAP) actuator have been promoted for several types of applications. In this study, the actuation and mechanical dynamics characteristics of a new core free flat DEAP soft actuator were investigated. This actuator was developed by Danfoss PolyPower. DC voltage of up to 2000 V was supplied for identifying the actuation characteristics of the actuator and compare with the existing formula. The operational frequency of the actuator was determined by dynamic testing. Then, the soft actuator has been modelled as a uniform bar rigidly fixed at one end and attached to mass at another end. Results from the theoretical model were compared with the experimental results. It was found that the deformation of the current actuator was quadratic proportional to the voltage supplied. It was found that experimental results and theory were not in good agreement for low and high voltage with average percentage error are 104% and 20.7%, respectively. The resonance frequency of the actuator was near 14 Hz. Mass of load added, inhomogeneity and initial tension significantly affected the resonance frequency of the soft actuator. The experimental results were consistent with the theoretical model at zero load. However, due to inhomogeneity, the frequency response function’s plot underlines a poor prediction where the theoretical calculation was far from experimental results as values of load increasing with the average percentage error 15.7%. Hence, it shows the proposed analytical procedure not suitable to provide accurate natural frequency for the DEAP soft actuator.


1996 ◽  
Vol 05 (04) ◽  
pp. 653-670 ◽  
Author(s):  
CÉLINE FIORINI ◽  
JEAN-MICHEL NUNZI ◽  
FABRICE CHARRA ◽  
IFOR D.W. SAMUEL ◽  
JOSEPH ZYSS

An original poling method using purely optical means and based on a dual-frequency interference process is presented. We show that the coherent superposition of two beams at fundamental and second-harmonic frequencies results in a polar field with an irreducible rotational spectrum containing both a vector and an octupolar component. This enables the method to be applied even to molecules without a permanent dipole such as octupolar molecules. After a theoretical analysis of the process, we describe different experiments aiming at light-induced noncentrosymmetry performed respectively on one-dimensional Disperse Red 1 and octupolar Ethyl Violet molecules. Macroscopic octupolar patterning of the induced order is demonstrated in both transient and permanent regimes. Experimental results show good agreement with theory.


2021 ◽  
pp. 112889
Author(s):  
Junxing Meng ◽  
Yu Qiu ◽  
Chengyi Hou ◽  
Qinghong Zhang ◽  
Yaogang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document