scholarly journals Validity of a noninvasive estimation of deep body temperature when wearing personal protective equipment during exercise and recovery

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Andrew P. Hunt ◽  
Mark J. Buller ◽  
Matthew J. Maley ◽  
Joseph T. Costello ◽  
Ian B. Stewart
2002 ◽  
Vol 16 (4) ◽  
pp. 354-357 ◽  
Author(s):  
Michiaki Yamakage ◽  
Sohshi Iwasaki ◽  
Akiyoshi Namiki

1992 ◽  
Vol 26 (3) ◽  
pp. 191-198 ◽  
Author(s):  
Kazushi Daimon ◽  
Naoto Yamada ◽  
Tetsushi Tsujimoto ◽  
Saburo Takahashi

1987 ◽  
Vol 39 (3) ◽  
pp. 367-370 ◽  
Author(s):  
Mark S. Blumberg ◽  
Julie A. Mennella ◽  
Howard Moltz

1992 ◽  
Vol 163 (1) ◽  
pp. 139-151 ◽  
Author(s):  
R. M. BEVAN ◽  
P. J. BUTLER

Six tufted ducks were trained to dive for food at summer temperatures (air, 26°C, water, 23°C) and at winter temperatures (air, 5.8°C, water 7.4°C). The mean resting oxygen consumption (Voo2) a t winter temperatures (rwin) was 90% higher than that at summer temperatures (Tsum), but deep body temperatures (Tb) were not significantly different. Diving behaviour and mean oxygen consumption for dives of mean duration were similar at Twin and at Tsum, although the mean oxygen consumption for surface intervals of mean duration was 50% greater at Twin and Tb was significantly lower (1°C) at the end of a series of dives in winter than it was in summer. There appears to be an energy saving of 67 J per dive during winter conditions and this may, at least partially, be the result of the metabolic heat produced by the active muscles being used to maintain body temperature. While at rest under winter conditions, this would be achieved by shivering thermogenesis. Thus, the energetic costs of foraging in tufted ducks in winter are not as great as might be expected from the almost doubling of metabolic rate in resting birds.


Sign in / Sign up

Export Citation Format

Share Document