scholarly journals Pedicle screw accuracy assessment in ExcelsiusGPS® robotic spine surgery: evaluation of deviation from pre-planned trajectory

2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Bowen Jiang ◽  
A. Karim Ahmed ◽  
Corinna C. Zygourakis ◽  
Samuel Kalb ◽  
Alex M. Zhu ◽  
...  
2021 ◽  
pp. 155633162110266
Author(s):  
Ram K. Alluri ◽  
Fedan Avrumova ◽  
Ahilan Sivaganesan ◽  
Avani S. Vaishnav ◽  
Darren R. Lebl ◽  
...  

As robotics in spine surgery has progressed over the past 2 decades, studies have shown mixed results on its clinical outcomes and economic impact. In this review, we highlight the evolution of robotic technology over the past 30 years, discussing early limitations and failures. We provide an overview of the history and evolution of currently available spinal robotic platforms and compare and contrast the available features of each. We conclude by summarizing the literature on robotic instrumentation accuracy in pedicle screw placement and clinical outcomes such as complication rates and briefly discuss the future of robotic spine surgery.


2017 ◽  
Vol 23 ◽  
pp. 5960-5968 ◽  
Author(s):  
Yong Fan ◽  
Jinpeng Du ◽  
Jianan Zhang ◽  
Shichang Liu ◽  
Xukai Xue ◽  
...  

2015 ◽  
Vol 5 (1_suppl) ◽  
pp. s-0035-1554581-s-0035-1554581
Author(s):  
José Vicente Ballesteros Plaza ◽  
Ratko Jovan Yurac Barrientos ◽  
Enrique Andrés Viveros Pereira

2021 ◽  
Author(s):  
Vishal Kumar ◽  
Vishnu Baburaj ◽  
Prasoon Kumar ◽  
Sarvdeep Singh Dhatt

AbstractBackgroundPedicle screw insertion is routinely carried out in spine surgery that has traditionally been performed under fluoroscopy guidance. Robotic guidance has recently gained popularity in order to improve the accuracy of screw placement. However, it is unclear whether the use of robotics alters the accuracy of screw placement or clinical outcomes.ObjectivesThis systematic review aims to compare the results of pedicle screws inserted under fluoroscopy guidance, with those inserted under robotic guidance, in terms of both short-term radiographic outcomes, as well as long-term clinical outcomes.MethodsThis systematic review will be conducted according to the PRISMA guidelines. A literature search will be conducted on the electronic databases of PubMed, Embase, Scopus, and Ovid with a pre-determined search strategy. A manual bibliography search of included studies will also be done. Original articles in English that directly compare pedicle screw insertion under robotic guidance to those inserted under fluoroscopy guidance will be included. Data on outcomes will be extracted from included studies and analysis carried out with the help of appropriate software.


2020 ◽  
Vol 72 ◽  
pp. 350-356 ◽  
Author(s):  
Nhu Q. Nguyen ◽  
Stefano M. Priola ◽  
Joel M. Ramjist ◽  
Daipayan Guha ◽  
Yuta Dobashi ◽  
...  

2017 ◽  
Vol 42 (5) ◽  
pp. E4 ◽  
Author(s):  
Timur M. Urakov ◽  
Ken Hsuan-kan Chang ◽  
S. Shelby Burks ◽  
Michael Y. Wang

OBJECTIVESpine surgery is complex and involves various steps. Current robotic technology is mostly aimed at assisting with pedicle screw insertion. This report evaluates the feasibility of robot-assisted pedicle instrumentation in an academic environment with the involvement of residents and fellows.METHODSThe Renaissance Guidance System was used to plan and execute pedicle screw placement in open and percutaneous consecutive cases performed in the period of December 2015 to December 2016. The database was reviewed to assess the usability of the robot by neurosurgical trainees. Outcome measures included time per screw, fluoroscopy time, breached screws, and other complications. Screw placement was assessed in patients with postoperative CT studies. The speed of screw placement and fluoroscopy time were collected at the time of surgery by personnel affiliated with the robot’s manufacturer. Complication and imaging data were reviewed retrospectively.RESULTSA total of 306 pedicle screws were inserted in 30 patients with robot guidance. The average time for junior residents was 4.4 min/screw and for senior residents and fellows, 4.02 min/screw (p = 0.61). Among the residents dedicated to spine surgery, the average speed was 3.84 min/screw, while nondedicated residents took 4.5 min/screw (p = 0.41). Evaluation of breached screws revealed some of the pitfalls in using the robot.CONCLUSIONSNo significant difference regarding the speed of pedicle instrumentation was detected between the operators’ years of experience or dedication to spine surgery, although more participants are required to investigate this completely. On the other hand, there was a trend toward improved efficiency with more cases performed. To the authors’ knowledge, this is the first reported academic experience with robot-assisted spine instrumentation.


2015 ◽  
Vol 24 (5) ◽  
pp. 990-1004 ◽  
Author(s):  
Ahmed A. Aoude ◽  
Maryse Fortin ◽  
Rainer Figueiredo ◽  
Peter Jarzem ◽  
Jean Ouellet ◽  
...  

2018 ◽  
Vol 21 (2) ◽  
pp. 190-196 ◽  
Author(s):  
Jonathan N. Sellin ◽  
Jeffrey S. Raskin ◽  
Kristen A. Staggers ◽  
Alison Brayton ◽  
Valentina Briceño ◽  
...  

Thoracic and lumbar cortical bone trajectory pedicle screws have been described in adult spine surgery. They have likewise been described in pediatric CT-based morphometric studies; however, clinical experience in the pediatric age group is limited. The authors here describe the use of cortical bone trajectory pedicle screws in posterior instrumented spinal fusions from the upper thoracic to the lumbar spine in 12 children. This dedicated study represents the initial use of cortical screws in pediatric spine surgery.The authors retrospectively reviewed the demographics and procedural data of patients who had undergone posterior instrumented fusion using thoracic, lumbar, and sacral cortical screws in children for the following indications: spondylolysis and/or spondylolisthesis (5 patients), unstable thoracolumbar spine trauma (3 patients), scoliosis (2 patients), and tumor (2 patients).Twelve pediatric patients, ranging in age from 11 to 18 years (mean 15.4 years), underwent posterior instrumented fusion. Seventy-six cortical bone trajectory pedicle screws were placed. There were 33 thoracic screws and 43 lumbar screws. Patients underwent surgery between April 29, 2015, and February 1, 2016. Seven (70%) of 10 patients with available imaging achieved a solid fusion, as assessed by CT. Mean follow-up time was 16.8 months (range 13–22 months). There were no intraoperative complications directly related to the cortical bone trajectory screws. One patient required hardware revision for caudal instrumentation failure and screw-head fracture at 3 months after surgery.Mean surgical time was 277 minutes (range 120–542 minutes). Nine of the 12 patients received either a 12- or 24-mg dose of recombinant human bone morphogenic protein 2. Average estimated blood loss was 283 ml (range 25–1100 ml).In our preliminary experience, the cortical bone trajectory pedicle screw technique seems to be a reasonable alternative to the traditional trajectory pedicle screw placement in children. Cortical screws seem to offer satisfactory clinical and radiographic outcomes, with a low complication profile.


Sign in / Sign up

Export Citation Format

Share Document