scholarly journals GMP-compliant production of [68Ga]Ga-NeoB for positron emission tomography imaging of patients with gastrointestinal stromal tumor

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Marc Pretze ◽  
Laura Reffert ◽  
Steffen Diehl ◽  
Stefan O. Schönberg ◽  
Carmen Wängler ◽  
...  

Abstract Background [68Ga]Ga-NeoB is a novel DOTA-coupled Gastrin Releasing Peptide Receptor (GRPR) antagonist with high affinity for GRPR and good in vivo stability. This study aimed at (1) the translation of preclinical results to the clinics and establish the preparation of [68Ga]Ga-NeoB using a GMP conform kit approach and a licensed 68Ge/68Ga generator and (2) to explore the application of [68Ga]Ga-NeoB in patients with gastrointestinal stromal tumors (GIST) before and/or after interventional treatment (selective internal radiotherapy, irreversible electroporation, microwave ablation). Results Validation of the production and quality control of [68Ga]Ga-NeoB for patient use had to be performed before starting the GMP production. Six independent batches of [68Ga]Ga-NeoB were produced, all met the quality and sterility criteria and yielded 712 ± 73 MBq of the radiotracer in a radiochemical purity of > 95% and a molar activity of 14.2 ± 1.5 GBq/μmol within 20 min synthesis time and additional 20 min quality control. Three patients (2 females, 1 male, 51–77 yrs. of age) with progressive gastrointestinal stromal tumor metastases in the liver or peritoneum not responsive to standard tyrosine kinase inhibitor therapy underwent both [68Ga]Ga-NeoB scans prior and after interventional therapy. Radiosynthesis of 68Ga-NeoB was performed using a kit approach under GMP conditions. No specific patient preparation such as fasting or hydration was required for [68Ga]Ga-NeoB PET/CT imaging. Contrast-enhanced PET/CT studies were performed. A delayed, second abdominal image after the administration of the of [68Ga]Ga-NeoB was acquired at 120 min post injection. Conclusions A fully GMP compliant kit preparation of [68Ga]Ga-NeoB enabling the routine production of the tracer under GMP conditions was established for clinical routine PET/CT imaging of patients with metastatic GIST and proved to adequately visualize tumor deposits in the abdomen expressing GRPR. Patients could benefit from additional information derived from [68Ga]Ga-NeoB diagnosis to assess the presence of GRPR in the tumor tissue and monitor antitumor treatment.

2021 ◽  
Vol 11 ◽  
Author(s):  
Xiao Jiang ◽  
Xiaoxiong Wang ◽  
Taipeng Shen ◽  
Yutang Yao ◽  
Meihua Chen ◽  
...  

68Ga labeled FAPI is the current standard for FAPI-PET, but its batch activity is limited. [18F]AlF-NOTA-FAPI-04 is a promising alternative combining the advantages of a chelator-based radiolabeling method with the unique properties of fluorine-18. The objective of this study was to develop a quick automatic method for synthesis of [18F]AlF-NOTA-FAPI-04 using a AllinOne synthesis system, and perform PET imaging with [18F]AlF-NOTA-FAPI-04 on patients. [18F]AlF-NOTA-FAPI-04 was produced, and its quality control was conducted by HPLC equipped with a radioactive detector. [18F]AlF-NOTA-FAPI-04 PET/CT imaging was performed in normal BALB/c mice (n = 3) and 4T1 breast cancer models (n = 3) to determine its biodistribution. Then [18F]AlF-NOTA-FAPI-04 and 18F-fluorodeoxyglucose (FDG) PET/CT imaging were performed in an invasive ductal carcinoma patient (female, 54 years old). The synthesis time of [18F]AlF-NOTA-FAPI-04 was about 25 min, and the radiochemical yield was 26.4 ± 1.5% (attenuation correction, n = 10). The radiochemical purity was above 99.0% and was above 98.0% after 6 h. The product was colorless transparent solution with pH value of 7.0–7.5, and the specific activity was 49.41 ± 3.19 GBq/μmol. PET/CT imaging in mice showed that physiological uptake of [18F]AlF-NOTA-FAPI-04 was mainly in the biliary system and bladder, and [18F]AlF-NOTA-FAPI-04 highly concentrated in tumor xenografts. PET/CT imaging in the patient showed that [18F]AlF-NOTA-FAPI-04 obtained high tumor background ratio (TBR) value of 8.44 in segment V and VI, while TBR value was 2.55 by 18F-FDG. [18F]AlF-NOTA-FAPI-04 could be synthesized with high radiochemical yield and batch production by AllinOne module and show excellent diagnosis performance in cancer patients.


2011 ◽  
Vol 36 (3) ◽  
pp. e1-e7 ◽  
Author(s):  
Chun-Sing Wong ◽  
Yiu-Ching Tiffany Chu ◽  
Pek-Lan Khong

2014 ◽  
Vol 53 (06) ◽  
pp. 242-248 ◽  
Author(s):  
H. Bergmann ◽  
B. Geist ◽  
M. Schaffarich ◽  
A. Hirtl ◽  
M. Hacker ◽  
...  

Summary Aim: To gather information on clinical operations, quality control (QC) standards and adoption of guidelines for FDG-PET/CT imaging in Austrian PET/CT centres. Methods: A written survey composed of 68 questions related to A) PET/CT centre and installation, B) standard protocol parameters for FDG-PET/CT imaging of oncology patients, and C) standard QC procedures was conducted between November and December 2013 among all Austrian PET/CT centres. In addition, a NEMA-NU2 2012 image quality phantom test was performed using standard whole-body imaging settings on all PET/CT systems with a lesion-to- background ratio of 4. Recovery coefficients (RC) were calculated for each lesion and PET/ CT system. Resu lts: A) 13 PET/CT systems were installed in 12 nuclear medicine departments at public hospitals. B) Average fasting prior to FDG-PET/CT was 7.6 (4-12) h. All sites measured blood glucose levels while using different cut-off levels (64%: 150 mg/dl). Weight- based activity injection was performed at 83% sites with a mean FDG activity of 4.1 MBq/kg. Average FDG uptake time was 55 (45-75) min. All sites employed CT contrast agents (variation from 1 %-95% of the patients). All sites reported SUV-max. C) Frequency of QC tests varied significantly and QC phantom measurements revealed significant differences in RCs. Conclusion: Significant variations in FDG-PET/CT protocol parameters among all Austrian PET/CT users were observed. subsequently, efforts need to be put in place to further standardize imaging protocols. At a minimum clinical PET/CT operations should ensure compliance with existing guidelines. Further, standardized QC procedures must be followed to improve quantitative accuracy across PET/CT centres.


2008 ◽  
Vol 33 (3) ◽  
pp. 211-212 ◽  
Author(s):  
Ignacio Banzo ◽  
Remedios Quirce ◽  
Isabel Martinez-Rodriguez ◽  
Julio Jimenez-Bonilla ◽  
Aurora Sainz-Esteban ◽  
...  

2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Kesav Raghavan ◽  
Robert R. Flavell ◽  
Antonio C. Westphalen ◽  
Spencer C. Behr

Sign in / Sign up

Export Citation Format

Share Document