scholarly journals Reconstructing and forecasting the COVID-19 epidemic in the United States using a 5-parameter logistic growth model

Author(s):  
Ding-Geng Chen ◽  
Xinguang Chen ◽  
Jenny K. Chen
2020 ◽  
Author(s):  
Brijesh P. Singh

AbstractNovel corona virus is declared as pandemic and India is struggling to control this from a massive attack of death and destruction, similar to the other countries like China, Europe, and the United States of America. India reported 2545 cases novel corona confirmed cases as of April 2, 2020 and out of which 191 cases were reported recovered and 72 deaths occurred. The first case of novel corona is reported in India on January 30, 2020. The growth in the initial phase is following exponential. In this study an attempt has been made to model the spread of novel corona infection. For this purpose logistic growth model with minor modification is used and the model is applied on truncated information on novel corona confirmed cases in India. The result is very exiting that till date predicted number of confirmed corona positive cases is very close to observed on. The time of point of inflexion is found in the end of the April, 2020 means after that the increasing growth will start decline and there will be no new case in India by the end of July, 2020.


2020 ◽  
Author(s):  
Keunyoung Yoo ◽  
Mohammad Arashi ◽  
Andriette Bekker

AbstractIn this paper, we investigate briefly the appropriateness of the widely used logistic growth curve modeling with focus on COVID-19 spread, from a data-driven perspective. Specifically, we suggest the Gumbel growth model for behaviour of COVID-19 cases in European countries in addition to the United States of America (US), for better detecting the growth and prediction. We provide a suitable fit and predict the growth of cases for some selected countries as illustration. Our contribution will stimulate the correct growth spread modeling for this pandemic outbreak.


2017 ◽  
Author(s):  
Wang Jin ◽  
Scott W McCue ◽  
Matthew J Simpson

AbstractCell proliferation is the most important cellular-level mechanism responsible for regulating cell population dynamics in living tissues. Modern experimental procedures show that the proliferation rates of individual cells can vary significantly within the same cell line. However, in the mathematical biology literature, cell proliferation is typically modelled using a classical logistic equation which neglects variations in the proliferation rate. In this work, we consider a discrete mathematical model of cell migration and cell proliferation, modulated by volume exclusion (crowding) effects, with variable rates of proliferation across the total population. We refer to this variability as heterogeneity. Constructing the continuum limit of the discrete model leads to a generalisation of the classical logistic growth model. Comparing numerical solutions of the model to averaged data from discrete simulations shows that the new model captures the key features of the discrete process. Applying the extended logistic model to simulate a proliferation assay using rates from recent experimental literature shows that neglecting the role of heterogeneity can, at times, lead to misleading results.


2001 ◽  
Author(s):  
Peter Vadasz ◽  
Alisa S. Vadasz

Abstract A neoclassical model is proposed for the growth of cell and other populations in a homogeneous habitat. The model extends on the Logistic Growth Model (LGM) in a non-trivial way in order to address the cases where the Logistic Growth Model (LGM) fails short in recovering qualitative as well as quantitative features that appear in experimental data. These features include in some cases overshooting and oscillations, in others the existence of a “Lag Phase” at the initial growth stages, as well as an inflection point in the “In curve” of the population size. The proposed neoclassical model recovers also the Logistic Growth Curve as a special case. Comparisons of the solutions obtained from the proposed neoclassical model with experimental data confirm its quantitative validity, as well as its ability to recover a wide range of qualitative features captured in experiments.


PLoS ONE ◽  
2020 ◽  
Vol 15 (6) ◽  
pp. e0235247 ◽  
Author(s):  
Yi Zou ◽  
Stephen Pan ◽  
Peng Zhao ◽  
Lei Han ◽  
Xiaoxiang Wang ◽  
...  

2018 ◽  
Vol 445 ◽  
pp. 51-61 ◽  
Author(s):  
Wang Jin ◽  
Scott W. McCue ◽  
Matthew J. Simpson

Sign in / Sign up

Export Citation Format

Share Document