scholarly journals Utility of magnetic resonance proton density fat fraction technique in quantification of liver fat in living donors for liver transplantation

Author(s):  
Fatma Mohamed Sherif ◽  
Sabry Alameldeen Elmogy ◽  
Rihame Mohamed Abd EL-wahab ◽  
Mohamed Abdel Wahab

Abstract Background Hepatic steatosis in living donors for liver transplantation causes morbidity of both donor and recipient. This study aims at evaluating magnetic resonance proton density fat fraction technique (MR PDFF) in quantitative evaluation of living donor’s hepatic steatosis compared to histopathology. Results The examined potential living liver donors’ liver biopsies revealed hepatic steatosis < 5% (grade 0) in 40 donors and 5–10% (grade 1) in 7 donors. MR PDFF technique with IDEAL sequence showed excellent results for prediction and quantitative evaluation of liver fat with sensitivity, specificity, and accuracy of 85.7%, 97.5%, and 95.7%, respectively, compared to histopathology (95% confidence interval 0.98–1.01). There was an excellent inter-reader agreement between both readers in estimation of MR liver fat fraction (r = 0.969 at 95% confidence interval 0.946–0.983). Conclusion Noninvasive hepatic MR PDFF technique with IDEAL sequence is a precise reliable technique for pre-operative quantitative assessment of hepatic steatosis in potential living liver donors.

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255768
Author(s):  
Bien Van Tran ◽  
Kouichi Ujita ◽  
Ayako Taketomi-Takahashi ◽  
Hiromi Hirasawa ◽  
Takayuki Suto ◽  
...  

Purpose To evaluate the reliability of ultrasound hepatorenal index (US-HRI) and magnetic resonance imaging proton density fat fraction (MRI-PDFF) techniques in the diagnosis of hepatic steatosis, with magnetic resonance spectroscopy proton density fat fraction (MRS-PDFF) as the reference standard. Materials and methods Fifty-two adult volunteers (30 men, 22 women; age, 31.5 ± 6.5 years) who had no history of kidney disease or viral/alcoholic hepatitis were recruited to undergo abdominal US, MRI, and MRS examinations. US-HRI was calculated from the average of three pairs of regions of interest (ROIs) measurements placed in the liver parenchyma and right renal cortex. On MRI, the six-point Dixon technique was employed for calculating proton density fat fraction (MRI-PDFF). An MRS sequence with a typical voxel size of 27 ml was chosen to estimate MRS-PDFF as the gold standard. The data were evaluated using Pearson’s correlation coefficient and receiver operating characteristic (ROC) curves. Results The Pearson correlation coefficients of US-HRI and MRI-PDFF with MRS-PDFF were 0.38 (p = 0.005) and 0.95 (p<0.001), respectively. If MRS-PDFF ≥5.56% was defined as the gold standard of fatty liver disease, the areas under the curve (AUCs), cut-off values, sensitivities and specificities of US-HRI and MRI-PDFF were 0.74, 1.54, 50%, 91.7% and 0.99, 2.75%, 100%, 88.9%, respectively. The intraclass correlation coefficients (ICCs) of US-HRI and MRI-PDFF were 0.70 and 0.85. Conclusion MRI-PDFF was more reliable than US-HRI in diagnosing hepatic steatosis.


2020 ◽  
Vol 20 (82) ◽  
pp. 169-175
Author(s):  
Natthaporn Tanpowpong ◽  
◽  
Sineenart Panichyawat ◽  

Objectives: Conventional ultrasonography can provide only semi-quantitative assessment of hepatic steatosis. The aim of this study was to assess sonographic hepatorenal ratio to quantify the severity of fatty liver. Methods: We performed a retrospective analysis of 179 patients with various liver diseases who underwent abdominal magnetic resonance imaging and ultrasonography on the same day. The hepatorenal ratio was calculated by the ratio between the mean echo intensity in regions of interests of the liver and regions of interests of the right renal cortex. Magnetic resonance imaging-proton density fat fraction was used as standard reference for steatosis grading. The effect of fibrosis measured by magnetic resonance elastography on the degree of correlation was also assessed. Results: The hepatorenal ratio was highly correlated with magnetic resonance imaging-proton density fat fraction (Spearman’s coefficient = 0.83) (p <0.001). High correlation of hepatorenal ratio with magnetic resonance imaging-proton density fat fraction was observed in patients with less than stage 2 fibrosis (p <0.001), whereas moderate correlation of hepatorenal ratio with magnetic resonance imaging-proton density fat fraction was found in patients with ≥ stage 2 fibrosis or higher (p <0.001). The hepatorenal ratio cutoff point for prediction of grade 1 hepatic steatosis was 1.18 with sensitivity of 90.0% and specificity of 80.0%. The hepatorenal ratio cutoff point for prediction of grade 2 and grade 3 hepatic steatosis was 1.55 and 1.60, respectively, with sensitivity greater than 90% and specificity greater than 80%. Conclusions: The hepatorenal ratio could become an effective quantitative tool for hepatic steatosis alternative to magnetic resonance imaging-proton density fat fraction. Application should be careful in the group of patients with stage 2 liver fibrosis or higher.


Sign in / Sign up

Export Citation Format

Share Document