scholarly journals Molecular phylogenetic analysis of Pulmonata (Mollusca: Gastropoda) on the basis of Histone-3 gene

Author(s):  
Vijaya Sai Ayyagari ◽  
Krupanidhi Sreerama

Abstract Background In the present study, phylogenetic relationships within Heterobranchia in particular to Pulmonata were evaluated by means of Histone-3 (H3) gene sequence information. H3 gene is a slow evolving marker and is useful in resolving the deep level relationships. This is the first study to report the phylogeny of Pulmonata with more number of representatives from the group on the basis of H3 gene. Results The major groups within Heterobranchia viz. Lower Heterobranchia, Opisthobranchia, and Pulmonata were non-monophyletic. A few of the pulmonate groups’ viz. Planorbidae, Lymnaeidae, Siphonariidae, Veronicellidae, and Stylommatophora were recovered as monophyletic. The concepts of Eupulmonata and Geophila were not observed in the present study. Conclusions The present study was undertaken with an objective to study the phylogeny of Pulmonata reconstructed on the basis of H3 gene and its ability to resolve the deeper divergences in Pulmonata. However, the resolution at the deeper nodes is limited. There is a good resolution at the level of genera. In the future, inclusion of more number of taxa with increased sequence length of H3 marker may yield resolved topologies that may shed more insights into the phylogeny of Pulmonata.

Phytotaxa ◽  
2021 ◽  
Vol 514 (2) ◽  
pp. 158-166
Author(s):  
XIAO-LING LI ◽  
HAI-YING YU ◽  
XI LUO ◽  
HAO WU ◽  
CHUN-YAN ZHAO ◽  
...  

Thirty-seven Phyllachora specimens were collected in China and examined for morphological characteristics. A molecular phylogenetic analysis based on a combined sequence dataset of ITS and LSU was also undertaken. Phyllachora cephalostachyi sp. nov. on Cephalostachyum pergracile is described based on its distinct phylogenetic relationships and a comparison of its morphological characteristics with known Phyllachora species on bamboo. Our results indicate a high species diversity of Phyllachora on bamboo in China. A full description and colour photographs of micro-characters are provided for the new species. A phylogenetic tree to show placement of the new species, and a table to compare morphology of the Phyllachora species reported on bamboo are also provided.


PhytoKeys ◽  
2020 ◽  
Vol 165 ◽  
pp. 99-113
Author(s):  
Bine Xue ◽  
Yanwen Chen ◽  
Richard M. K. Saunders

The genus Polyalthia (Annonaceae) has undergone dramatic taxonomic changes in recent years. Nine Polyalthia species have historically been recognized in Fiji, all of which have subsequently been transferred to three different genera, viz. Goniothalamus, Huberantha and Meiogyne. The transfer of six of these species has received strong molecular phylogenetic support, although the other three species, Polyalthia amoena, P. capillata and P. loriformis [all transferred to Huberantha], have never previously been sampled in a phylogenetic study. We address this shortfall by sampling available herbarium specimens of all three species and integrating the data in a molecular phylogenetic analysis. The resultant phylogeny provides strong support for the transfer of these species to Huberantha. The taxonomic realignment of all nine Fijian species formerly classified in Polyalthia is also clearly demonstrated and supported by the resultant phylogeny. The updated taxonomic treatments of the nine species, a key to the three genera and a key to the Fijian Huberantha species are provided.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1190
Author(s):  
Yuqi Huang ◽  
Minghao Sun ◽  
Lenan Zhuang ◽  
Jin He

Androgen-inducible genes (AIGs), which can be regulated by androgen level, constitute a group of genes characterized by the presence of the AIG/FAR-17a domain in its protein sequence. Previous studies on AIGs demonstrated that one member of the gene family, AIG1, is involved in many biological processes in cancer cell lines and that ADTRP is associated with cardiovascular diseases. It has been shown that the numbers of AIG paralogs in humans, mice, and zebrafish are 2, 2, and 3, respectively, indicating possible gene duplication events during vertebrate evolution. Therefore, classifying subgroups of AIGs and identifying the homologs of each AIG member are important to characterize this novel gene family further. In this study, vertebrate AIGs were phylogenetically grouped into three major clades, ADTRP, AIG1, and AIG-L, with AIG-L also evident in an outgroup consisting of invertebrsate species. In this case, AIG-L, as the ancestral AIG, gave rise to ADTRP and AIG1 after two rounds of whole-genome duplications during vertebrate evolution. Then, the AIG family, which was exposed to purifying forces during evolution, lost or gained some of its members in some species. For example, in eutherians, Neognathae, and Percomorphaceae, AIG-L was lost; in contrast, Salmonidae and Cyprinidae acquired additional AIG copies. In conclusion, this study provides a comprehensive molecular phylogenetic analysis of vertebrate AIGs, which can be employed for future functional characterization of AIGs.


2010 ◽  
Vol 28 (2) ◽  
pp. 323-328 ◽  
Author(s):  
Xianghai Tang ◽  
Rencheng Yu ◽  
Qingchun Zhang ◽  
Yunfeng Wang ◽  
Tian Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document