scholarly journals Pharmacokinetic predictions and docking studies of substituted aryl amine-based triazolopyrimidine designed inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH)

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zakari Ya’u Ibrahim ◽  
Adamu Uzairu ◽  
Gideon Adamu Shallangwa ◽  
Stephen Eyije Abechi

Abstract Background The sixteen (16) designed data set of substituted aryl amine-based triazolopyrimidine were docked against Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) employing Molegro Virtual Docker (MVD) software and their pharmacokinetic property determined through SwissADME predictor. Results The docking studies shows compound D16, 5-((6-methoxy-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl)amino)benzo[b]thiophen-4-ol to be the most interactive and stable derivative (re-rank score = − 114.205 kcal/mol) resulting from the hydrophobic as well as hydrogen interactions. The hydrogen interaction produced one hydrogen bond with the active residues LEU359 (H∙∙H∙∙O) at a bond distances of 2.2874 Å. All the designed derivatives were found to pass the Lipinski rule of five tests, supporting the drug-likeliness of the designed compounds. Conclusion The ADME analysis revealed a perfect concurrence with the Lipinski Ro5, where the derivatives were found to possess good pharmacokinetic properties such as molar refractivity (MR), number of rotatable bonds (nRotb), log of skin permeability (log Kp), blood-brain barrier (BBB). These results could a deciding factor for the optimization of novel antimalarial compounds.

2018 ◽  
Vol 8 (5-s) ◽  
pp. 322-326
Author(s):  
Pooja Mali ◽  
Shourya Pratap ◽  
Raghvendra S. Badhauria ◽  
Himanshu Gurjar

Objective: Docking studies of aminohydantoin derivatives as antimalarial agents. A novel derivative of aminohydantoins was selected from the literature. Method: in-silco studies using docking methodology. The compounds were sketched and energy minimized using Chem draw ultra and Chem 3D ultra respectively. Further, the compounds were docked into Plasmodium falciparum transferase inhibitor (3L7) using Molegro Virtual Platform. Twenty eight compounds were docked into the active site of Pf-lactate dehydrogenase cavity and all of them found to have similar binding interactions of a co-crystalized ligand. Result: The compounds were showed good docking score like moldock score and re-rank score. The finding of docking studies shows a typical molecular interaction pattern with lactate dehydrogenase. The binding interaction information derived from these molecules will be useful in future antimalarial agent design. Conclusion: From the docking study, it was observed that ligands bind to the electrostatic, hydrophobic clamp formed by the residues Asp 76(B), Tyr 190(B), Tyr 80(B) and Lys 72(B) which play an important role for Plasmodium falciparum inhibition.   The binding affinity, grid calculation and RMSD percentage lower and upper   parameters were calculated.   Hence, the observable data indicated that, above compounds can serve as good leads for further modification and optimization in the of treatment malaria. Keywords: Molegro, Chemdraw, aminohydantoins and docking, studies as Plasmodium falciparum, 4RAO, moldock score.


2019 ◽  
Vol 25 (35) ◽  
pp. 3776-3783
Author(s):  
Nebojša Pavlović ◽  
Maja Đanić ◽  
Bojan Stanimirov ◽  
Svetlana Goločorbin-Kon ◽  
Karmen Stankov ◽  
...  

Background: Resveratrol was demonstrated to act as partial agonist of PPAR-γ receptor, which opens up the possibility for its use in the treatment of metabolic disorders. Considering the poor bioavailability of resveratrol, particularly due to its low aqueous solubility, we aimed to identify analogues of resveratrol with improved pharmacokinetic properties and higher binding affinities towards PPAR-γ. Methods: 3D structures of resveratrol and its analogues were retrieved from ZINC database, while PPAR-γ structure was obtained from Protein Data Bank. Docking studies were performed using Molegro Virtual Docker software. Molecular descriptors relevant to pharmacokinetics were calculated from ligand structures using VolSurf+ software. Results: Using structural similarity search method, 56 analogues of resveratrol were identified and subjected to docking analyses. Binding energies were ranged from -136.69 to -90.89 kcal/mol, with 16 analogues having higher affinities towards PPAR-γ in comparison to resveratrol. From the calculated values of SOLY descriptor, 23 studied compounds were shown to be more soluble in water than resveratrol. However, only two tetrahydroxy stilbene derivatives, piceatannol and oxyresveratrol, had both better solubility and affinity towards PPAR-γ. These compounds also had more favorable ADME profile, since they were shown to be more metabolically stable and wider distributed in body than resveratrol. Conclusion: Piceatannol and oxyresveratrol should be considered as potential lead compounds for further drug development. Although experimental validation of obtained in silico results is required, this work can be considered as a step toward the discovery of new natural and safe drugs in treatment of metabolic disorders.


Author(s):  
Reihaneh Heidarian ◽  
Mansoureh Zahedi-Tabrizi

: Leflunomide (LFM) and its active metabolite, teriflunomide (TFM), have drawn a lot of attention for their anticancer activities, treatment of rheumatoid arthritis and malaria due to their capability to inhibit dihydroorotate dehydrogenase (DHODH) and Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) enzyme. In this investigation, the strength of intramolecular hydrogen bond (IHB) in five analogs of TFM (ATFM) has been analyzed employing density functional theory (DFT) using B3LYP/6-311++G (d, p) level and molecular orbital analysis in the gas phase and water solution. A detailed electronic structure study has been performed using the quantum theory of atoms in molecules (QTAIM) and the hydrogen bond energies (EHB) of stable conformer obtained in the range of 76-97 kJ/mol, as a medium hydrogen bond. The effect of substitution on the IHB nature has been studied by natural bond orbital analysis (NBO). 1H NMR calculations show an upward trend in the proton chemical shift of the enolic proton in the chelated ring (14.5 to 15.7ppm) by increasing the IHB strength. All the calculations confirmed the strongest IHB in 5-F-ATFM and the weakest IHB in 2-F-ATFM. Molecular orbital analysis, including the HOMO-LUMO gap and chemical hardness, was performed to compare the reactivity of inhibitors. Finally, molecular docking analysis was carried out to identify the potency of inhibition of these compounds against PfDHODH enzyme.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruolan Zeng ◽  
Jiyong Deng ◽  
Limin Dang ◽  
Xinliang Yu

AbstractA three-descriptor quantitative structure–activity/toxicity relationship (QSAR/QSTR) model was developed for the skin permeability of a sufficiently large data set consisting of 274 compounds, by applying support vector machine (SVM) together with genetic algorithm. The optimal SVM model possesses the coefficient of determination R2 of 0.946 and root mean square (rms) error of 0.253 for the training set of 139 compounds; and a R2 of 0.872 and rms of 0.302 for the test set of 135 compounds. Compared with other models reported in the literature, our SVM model shows better statistical performance in a model that deals with more samples in the test set. Therefore, applying a SVM algorithm to develop a nonlinear QSAR model for skin permeability was achieved.


2015 ◽  
Vol 10 (4) ◽  
pp. 917 ◽  
Author(s):  
Mukesh Kumar Kumawat ◽  
Dipak Chetia

<p class="Abstract">Seven novel dispiro-1,2,4,5-tetraoxane derivatives were synthesized and characterized by a number of analytical and spectroscopic techniques. The molecules were subsequently screened for in vitro antimalarial activity against chloroquine resistant strain of <em>Plasmodium falciparum</em> (RKL-9). At antimalarial activity screening, two compounds, namely 5d (MIC = 15.6 µg/mL or 64.5 µM) and 5f (MIC = 15.6 µg/mL or 54.6 µM) were found to be about 1.5 times more potent against chloroquine resistant strain-RKL-9 compared to chloroquine (MIC = 25.0 µg/mL or 78.3 µM). Molecular docking studies of potent ligands were also performed in cysteine protease binding pocket residues of falcipain-2 as a target protein.</p><p> </p>


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Katharine A. Collins ◽  
Thomas Rückle ◽  
Suzanne Elliott ◽  
Louise Marquart ◽  
Emma Ballard ◽  
...  

ABSTRACT DSM265 is a novel antimalarial drug in clinical development that acts as a selective inhibitor of Plasmodium dihydroorotate dehydrogenase. In a previous phase 1b study, a single 150-mg dose of DSM265 showed partial efficacy against experimentally induced blood-stage Plasmodium falciparum malaria (IBSM). Pharmacokinetic/pharmacodynamic modeling predicted a human efficacious dose of 340 mg. The primary objectives of the current study were to determine the safety and efficacy of a single oral 400-mg dose of DSM265 against P. falciparum in the IBSM model. Eight healthy participants were inoculated intravenously with 2,800 parasites and treated with DSM265 7 days later. Unexpectedly, one participant did not develop parasitemia during the study. All other participants developed parasitemia, with the complete clearance of asexual parasites occurring following DSM265 treatment. All seven subjects also became gametocytemic. The secondary objectives were to investigate the gametocytocidal and transmission-blocking activity of a second 400-mg dose of DSM265, which was administered 23 days after inoculation. Gametocytes were not cleared by the second dose of DSM265, and transmission-blocking activity could not be determined due to low gametocyte densities. Three DSM265-related adverse events occurred, including a cutaneous rash in one subject on the day of the second DSM265 dose. The results obtained in this study support the prediction of the efficacious dose of DSM265 and provide further evidence that DSM265 is generally safe and well tolerated. In addition, this study confirms preclinical data indicating that DSM265 permits the development and maturation of gametocytes and does not clear mature circulating gametocytes. (This study has been registered at ClinicalTrials.gov under identifier NCT02573857.)


2019 ◽  
Vol 13 ◽  
pp. 117793221986553 ◽  
Author(s):  
Gbolahan O Oduselu ◽  
Olayinka O Ajani ◽  
Yvonne U Ajamma ◽  
Benedikt Brors ◽  
Ezekiel Adebiyi

Plasmodium falciparum adenylosuccinate lyase ( PfADSL) is an important enzyme in purine metabolism. Although several benzimidazole derivatives have been commercially developed into drugs, the template design as inhibitor against PfADSL has not been fully explored. This study aims to model the 3-dimensional (3D) structure of PfADSL, design and predict in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) of 8 substituted benzo[ d]imidazol-1-yl)methyl)benzimidamide compounds as well as predict the potential interaction modes and binding affinities of the designed ligands with the modelled PfADSL. PfADSL 3D structure was modelled using SWISS-MODEL, whereas the compounds were designed using ChemDraw Professional. ADMET predictions were done using OSIRIS Property Explorer and Swiss ADME, whereas molecular docking was done with AutoDock Tools. All designed compounds exhibited good in silico ADMET properties, hence can be considered safe for drug development. Binding energies ranged from −6.85 to −8.75 kcal/mol. Thus, they could be further synthesised and developed into active commercial antimalarial drugs.


Sign in / Sign up

Export Citation Format

Share Document