scholarly journals Identification in silico and expression analysis of a β-1-4-endoglucanase and β-galactosidase genes related to ripening in guava fruit

Author(s):  
Mario A. Mejía-Mendoza ◽  
Cristina Garcidueñas-Piña ◽  
José S. Padilla-Ramírez ◽  
Ruth E. Soria-Guerra ◽  
José Francisco Morales-Domínguez

Abstract Background Guava fruit softening is a crucial process during ripening and this process involves a number of enzymes that modifies the cell wall. Two of the enzymes that regulate this process are (a) the β-1, 4-endoglucanase 17 (BEG) which hydrolyze β-1, 4 bonds from cellulose and hemicellulose, and (b) β-galactosidase (BGA) that hydrolyzes pectin chains. Bioinformatics and expression analysis information on these genes is limited in guava fruit. Results A fragment of a β-1, 4-endoglucanase 17 (PgE17), and another of a β-galactosidase (PgGa1) were identified. These sequences have a similarity of more than 85% with those reported in the NCBI database. In the guava genome, one homologous sequence was found for PgE17 in Chr 4 and two homologous to PgGa1: one in Chr 3 and the other one in Chr 6. Putative protein PgE17 contains part of the glyco_hydro_9 domain. Putative protein PgGa1 has a part of the glyco_hydro_35 domain. Phylogenetic analysis of PgE17 and PgGa1 revealed that both are highly conserved inside the Myrtaceae family. In silico expression analysis showed that both PgE17 and PgGa1 work in a coordinated way with other cell wall modifier enzymes. Expression of these genes was found in all the guava samples analyzed. However, the highest expression was found in the fruit in the breaking and ripe states. Conclusions A β-1, 4-endoglucanase 17, and β-galactosidase 1 sequences were identified. PgE17 and PgGa1 are expressed in all the plant tissues, and fruit ripening states. Although, the highest expression was on breaker and ripe states.

Author(s):  
Isabel Cruz-Lachica ◽  
Isidro Márquez-Zequera ◽  
Raúl Allende-Molar ◽  
Josefina León-Félix ◽  
Josefa Adriana Sañudo-Barajas ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 565
Author(s):  
Mathieu Gand ◽  
Kevin Vanneste ◽  
Isabelle Thomas ◽  
Steven Van Gucht ◽  
Arnaud Capron ◽  
...  

For 1 year now, the world is undergoing a coronavirus disease-2019 (COVID-19) pandemic due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The most widely used method for COVID-19 diagnosis is the detection of viral RNA by RT-qPCR with a specific set of primers and probe. It is important to frequently evaluate the performance of these tests and this can be done first by an in silico approach. Previously, we reported some mismatches between the oligonucleotides of publicly available RT-qPCR assays and SARS-CoV-2 genomes collected from GISAID and NCBI, potentially impacting proper detection of the virus. In the present study, 11 primers and probe sets investigated during the first study were evaluated again with 84,305 new SARS-CoV-2 unique genomes collected between June 2020 and January 2021. The lower inclusivity of the China CDC assay targeting the gene N has continued to decrease with new mismatches detected, whereas the other evaluated assays kept their inclusivity above 99%. Additionally, some mutations specific to new SARS-CoV-2 variants of concern were found to be located in oligonucleotide annealing sites. This might impact the strategy to be considered for future SARS-CoV-2 testing. Given the potential threat of the new variants, it is crucial to assess if they can still be correctly targeted by the primers and probes of the RT-qPCR assays. Our study highlights that considering the evolution of the virus and the emergence of new variants, an in silico (re-)evaluation should be performed on a regular basis. Ideally, this should be done for all the RT-qPCR assays employed for SARS-CoV-2 detection, including also commercial tests, although the primer and probe sequences used in these kits are rarely disclosed, which impedes independent performance evaluation.


2011 ◽  
Vol 39 (1) ◽  
pp. 327-334 ◽  
Author(s):  
Beatriz de Almeida Barros ◽  
Wiliane Garcia da Silva ◽  
Maurilio Alves Moreira ◽  
Everaldo Gonçalves de Barros

2005 ◽  
Vol 26 (2) ◽  
pp. 139-147 ◽  
Author(s):  
Francisca do Val ◽  
Paulo Nuin

AbstractThe systematics and phylogenetic relationships of the family Leptodactylidae are controversial as is the intrafamilial phylogeny of the leptodactylids. Here we analyze the relationships of the leptodactylid subfamily Hylodinae. This subfamily has been considered to be monophyletic and composed of three genera, Hylodes, Crossodactylus and Megaelosia. In the present study 49 characters were used, based on different studies on Leptodactylidae phylogeny. Maximum parsimony methods with unweighted and successively weighted characters were used to estimate the phylogeny of the Hylodinae. Upon analysis, the data provided further evidence of the monophyletic status of the three genera, with Megaelosia being the basal genus and the other two genera being sister taxa. The analysis with successive weighting results in a more resolved topology of the species subgroups of the genus Hylodes and separates this genus from Crossodactylus and confirms that the hylodines are monophyletic.


Genes ◽  
2018 ◽  
Vol 9 (6) ◽  
pp. 284 ◽  
Author(s):  
Gökhan Karakülah ◽  
Athanasia Pavlopoulou

1970 ◽  
Vol 6 (2) ◽  
pp. 299-321
Author(s):  
K. ROBERTS ◽  
D. H. NORTHCOTE

Sycamore suspension callus cells have been partially synchronized to give a culture with a mitotic index of 15%. Living dividing cells of the culture have been examined with Nomarski differential interference optics and a comparable study made on fixed cells with the electron microscope. An organized band of reticulate cytoplasm partially encircles the nucleus at mitosis. The cell divides by the formation of a phragmosome which grows across the large vacuole; this allows the organization of the cytoplasm which forms the cell plate to be examined separately from the more general cytoplasm of the cell. The cell plate grows from one side of the cell to the other and down its length a complete developmental sequence can be seen. The Golgi bodies and the endoplasmic reticulum are probably involved in the formation of material for the construction of the cell plate and young cell wall. Microfibrils are formed within the plate in the more mature regions, while material contained within vesicles is incorporated at the young growing edge. At the edge of the plate microtubules are found and these correspond to the fibrillar appearance of the phragmoplast seen with the optical microscope. In the living cell an active movement of organelles along the peripheral cytoplasm can be seen and with fixed cells viewed with the electron microscope microtubules are often found adjacent to the plasmalemma and lying close to mitochondria, crystal-containing bodies and plastids. The appearance of crystal-containing bodies and plastids containing phytoferritin is described.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Eva Bauwens ◽  
Myrthe Joosten ◽  
Joemar Taganna ◽  
Mirko Rossi ◽  
Ayla Debraekeleer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document