scholarly journals An Imaging Roadmap for Biology Education: From Nanoparticles to Whole Organisms

2008 ◽  
Vol 7 (2) ◽  
pp. 202-209 ◽  
Author(s):  
Daniel J. Kelley ◽  
Richard J. Davidson ◽  
David L. Nelson

Imaging techniques provide ways of knowing structure and function in biology at different scales. The multidisciplinary nature and rapid advancement of imaging sciences requires imaging education to begin early in the biology curriculum. Guided by the National Institutes of Health (NIH) Roadmap initiatives, we incorporated a nanoimaging, molecular imaging, and medical imaging teaching unit into three 1-h class periods of an introductory course on ways of knowing biology. Activities were derived from NIH Roadmap initiatives in nanomedicine, regenerative medicine, and nuclear medicine. The course materials we describe contributed positively to student learning gains in quantifying and interpreting images, in characterizing imaging methods that provide ways of knowing biological structure and function, and in understanding scale in biology and imaging. The NIH Roadmap provides a useful context to educate students about the multidisciplinary imaging continuum.

1998 ◽  
Vol 15 (1) ◽  
pp. 26-28
Author(s):  
CS Breathnach

AbstractInterest in the psychiatric aspects of old age predated the institution of geriatrics as a clinical discipline, but the systematic study of the ageing brain only began in the second half of this century when an ageing population presented a global numerical challenge to society. In the senescent cerebral cortex, though the number of neurons is not reduced, cell shrinkage results in synaptic impoverishment with consequent cognitive impairment. Recent advances in imaging techniques, combined with burgeoning knowledge of neurobiological structure and function, have increased our understanding of the ageing processes in the human brain and permit an optimistic approach in the application of the newer insights into neuropsychology and geriatric psychiatry.


2021 ◽  
pp. 2100137
Author(s):  
Jeroen L.M. van Doorn ◽  
Francesca Pennati ◽  
Hendrik H.G. Hansen ◽  
Baziel G.M. van Engelen ◽  
Andrea Aliverti ◽  
...  

Respiratory muscle weakness is common in neuromuscular disorders and leads to significant respiratory difficulties. Therefore, reliable and easy assessment of respiratory muscle structure and function in neuromuscular disorders is crucial. In the last decade, ultrasound and MRI emerged as promising imaging techniques to assess respiratory muscle structure and function. Respiratory muscle imaging directly measures the respiratory muscles and, in contrast to pulmonary function testing, is independent of patient effort. This makes respiratory muscle imaging suitable to use as tool in clinical respiratory management and as outcome parameter in upcoming drug trials for neuromuscular disorders, particularly in children. In this narrative review, we discuss the latest studies and technological developments in imaging of the respiratory muscles by US and MR, and its clinical application and limitations. We aim to increase understanding of respiratory muscle imaging and facilitate its use as outcome measure in daily practice and clinical trials.


2017 ◽  
Vol 114 (1) ◽  
pp. 90-102 ◽  
Author(s):  
Chifei Kang ◽  
Myriam A Badr ◽  
Viktoriia Kyrychenko ◽  
Eeva-Liisa Eskelinen ◽  
Natalia Shirokova

Abstract Aims Duchenne muscular dystrophy (DMD) is an inherited devastating muscle disease with severe and often lethal cardiac complications. Emerging evidence suggests that the evolution of the pathology in DMD is accompanied by the accumulation of mitochondria with defective structure and function. Here, we investigate whether defects in the housekeeping autophagic pathway contribute to mitochondrial and metabolic dysfunctions in dystrophic cardiomyopathy. Methods and results We employed various biochemical and imaging techniques to assess mitochondrial structure and function as well as to evaluate autophagy, and specific mitochondrial autophagy (mitophagy), in hearts of mdx mice, an animal model of DMD. Our results indicate substantial structural damage of mitochondria and a significant decrease in ATP production in hearts of mdx animals, which developed cardiomyopathy. In these hearts, we also detected enhanced autophagy but paradoxically, mitophagy appeared to be suppressed. In addition, we found decreased levels of several proteins involved in the PINK1/PARKIN mitophagy pathway as well as an insignificant amount of PARKIN protein phosphorylation at the S65 residue upon induction of mitophagy. Conclusions Our results suggest faulty mitophagy in dystrophic hearts due to defects in the PINK1/PARKIN pathway.


Physchem ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 95-120
Author(s):  
Stewart F. Parker ◽  
David Lennon

Net Zero has the aim of achieving equality between the amount of greenhouse gas emissions produced and the amount removed from the atmosphere. There is widespread acceptance that for Net Zero to be achievable, chemistry, and hence catalysis, must play a major role. Most current studies of catalysts and catalysis employ a combination of physical methods, imaging techniques and spectroscopy to provide insight into the catalyst structure and function. One of the methods used is neutron scattering and this is the focus of this Perspective. Here, we show how neutron methods are being used to study reactions and processes that are directly relevant to achieving Net Zero, such as methane reforming, Fischer–Tropsch synthesis, ammonia and methanol production and utilization, bio-mass upgrading, fuel cells and CO2 capture and exploitation. We conclude by describing some other areas that offer opportunities.


2015 ◽  
Vol 21 (4) ◽  
pp. 251-260 ◽  
Author(s):  
Cristina Martinelli ◽  
Sukhwinder S. Shergill

SummaryRecent years have seen a dramatic increase in the advances and applications of medical imaging techniques. Tools with familiar acronyms such as MRI, EEG/MEG and PET/SPECT have provided invaluable information not only about the brain structure and function associated with psychiatric disorders, but increasingly about the mechanisms underpinning these disorders. This evolving understanding of the specific pathophysiology of mental disorder paves the way for improvement in the diagnosis, treatment and prognosis of the disorders managed in everyday clinical practice. This article gives an overview of the main neuroimaging approaches, contemporary applications of this technology to psychiatric disorder and signposts to the exciting possibilities for the future.


Author(s):  
Stergios Doumouchtsis

This chapter provides up-to-date information on a series of subjects covering a wide spectrum of basic sciences and selected topics with relevance to various clinical practice areas in obstetrics and gynaecology. It is not possible to provide a completely comprehensive cover of all areas of basic sciences within a book chapter, but the subjects explored here include the structure and function of the genome ovulation and ovarian function, fertilization and implantation, embryology, pathology, microbiology, immunology, biochemistry, physiology, endocrinology, pharmacology, and physics (including imaging techniques). Some of these topics are discussed in more detail in other chapters in this textbook. Key knowledge is presented using simple and concise definitions for quick reference along with tables and diagrams.


2016 ◽  
Vol 113 (8) ◽  
pp. 2264-2269 ◽  
Author(s):  
Bruce E. Herring ◽  
Roger A. Nicoll

The molecular mechanism underlying long-term potentiation (LTP) is critical for understanding learning and memory. CaMKII, a key kinase involved in LTP, is both necessary and sufficient for LTP induction. However, how CaMKII gives rise to LTP is currently unknown. Recent studies suggest that Rho GTPases are necessary for LTP. Rho GTPases are activated by Rho guanine exchange factors (RhoGEFs), but the RhoGEF(s) required for LTP also remain unknown. Here, using a combination of molecular, electrophysiological, and imaging techniques, we show that the RhoGEF Kalirin and its paralog Trio play critical and redundant roles in excitatory synapse structure and function. Furthermore, we show that CaMKII phosphorylation of Kalirin is sufficient to enhance synaptic AMPA receptor expression, and that preventing CaMKII signaling through Kalirin and Trio prevents LTP induction. Thus, our data identify Kalirin and Trio as the elusive targets of CaMKII phosphorylation responsible for AMPA receptor up-regulation during LTP.


Sign in / Sign up

Export Citation Format

Share Document