Estrogen receptor-α deficiency promotes increased TNF-α secretion and bacterial killing by murine macrophages in response to microbial stimuli in vitro

2004 ◽  
Vol 75 (6) ◽  
pp. 1166-1172 ◽  
Author(s):  
K. Chad Lambert ◽  
Edward M. Curran ◽  
Barbara M. Judy ◽  
Dennis B. Lubahn ◽  
D. Mark Estes
2018 ◽  
Vol 39 (3) ◽  
Author(s):  
Kyle T. Helzer ◽  
Mary Szatkowski Ozers ◽  
Mark B. Meyer ◽  
Nancy A. Benkusky ◽  
Natalia Solodin ◽  
...  

ABSTRACT Posttranslational modifications are key regulators of protein function, providing cues that can alter protein interactions and cellular location. Phosphorylation of estrogen receptor α (ER) at serine 118 (pS118-ER) occurs in response to multiple stimuli and is involved in modulating ER-dependent gene transcription. While the cistrome of ER is well established, surprisingly little is understood about how phosphorylation impacts ER-DNA binding activity. To define the pS118-ER cistrome, chromatin immunoprecipitation sequencing was performed on pS118-ER and ER in MCF-7 cells treated with estrogen. pS118-ER occupied a subset of ER binding sites which were associated with an active enhancer mark, acetylated H3K27. Unlike ER, pS118-ER sites were enriched in GRHL2 DNA binding motifs, and estrogen treatment increased GRHL2 recruitment to sites occupied by pS118-ER. Additionally, pS118-ER occupancy sites showed greater enrichment of full-length estrogen response elements relative to ER sites. In an in vitro DNA binding array of genomic binding sites, pS118-ER was more commonly associated with direct DNA binding events than indirect binding events. These results indicate that phosphorylation of ER at serine 118 promotes direct DNA binding at active enhancers and is a distinguishing mark for associated transcription factor complexes on chromatin.


Endocrinology ◽  
2004 ◽  
Vol 145 (1) ◽  
pp. 113-125 ◽  
Author(s):  
Dong-bao Chen ◽  
Ian M. Bird ◽  
Jing Zheng ◽  
Ronald R. Magness

Abstract Rapid uterine vasodilatation after estrogen administration is believed to be mediated by endothelial production of nitric oxide (NO) via endothelial NO synthase (eNOS). However, the mechanism(s) by which estrogen activates eNOS in uterine artery endothelial cells (UAEC) is unknown. In this study, we observed that estradiol-17β (E2) and E2-BSA rapidly (<2 min) increased total NOx production in UAEC in vitro. This was associated with rapid eNOS phosphorylation and activation but was unaltered by pretreatment with actinomycin-D. estrogen receptor-α protein was detectable in isolated plasma membrane proteins by immunoblotting, and E2-BSA-fluorescein isothiocyanate binding was evident on the plasma membrane of UAEC. E2 did not mobilize intracellular Ca2+, but E2 and ionomycin in combination induced greater eNOS phosphorylation than either E2 or ionomycin alone. E2 did not stimulate rapid Akt phosphorylation. E2 stimulated rapid ERK2/1 activation in a time- and dose-dependent manner, with maximal responses observed at 5–10 min with E2 (10 nm to 1 μm) treatment. Acute activation of eNOS and NOx production by E2 could be inhibited by PD98059 but not by LY294002. When E2-BSA was applied, similar responses in NOx production, eNOS, and ERK2/1 activation to those of E2 were achieved. In addition, E2 and E2-BSA-induced ERK2/1 activation and ICI 182,780 could inhibit NOx production by E2. Thus, acute activation of eNOS to produce NO in UAEC by estrogen is at least partially through an ERK pathway, possibly via estrogen receptor localized on the plasma membrane. This pathway may provide a novel mechanism for NO-mediated rapid uterine vasodilatation by estrogen.


Author(s):  
Eldafira Eldafira ◽  
Abinawanto Abinawanto ◽  
Luthfiralda Sjahfirdi ◽  
Asmarinah Asmarinah ◽  
Purnomo Soeharso ◽  
...  

Endometriosis is a multifactorial disease in which genetic and environmental factors interact causing its pathogenesis. The aim of this study was to investigate the expression pattern of estrogen receptor α (ERα) and β (ERβ) in endometriosis patients compared to normal endometrioum (n=18) as a control by using Quantitative Real Time PCR method. Moreover, we also measured serum estradiol levels of endometriosis patients in the proliferation phase of the menstrual cycle using the enzyme-linked immunosorbent assay method. The mRNA expression of ERβ was significantly higher in the endometriosis group compared to control, and the result of t-test showed that were significantly different (P<0.05). Overexpression of ERβ in endometriosis was likely to have other significant important impacts in the pathology of endometriosis that allowed ERβ to stimulate prostaglandin production in endometriosis tissue and cells. Estradiol content did not correlate with the ERα expression, and it is weakly correlated with ERβ mRNA expression. Molecular docking analysis showed that ERα and ERβ have different binding interactions with synthetic antiestrogens, whereas the best inhibitor was Ral2 to ERα and Aco1 to ERβ. Thus, both inhibitors could be used as leads in further investigation of ERα, ERβ inhibitory activities in vitro and in vivo.


2013 ◽  
Vol 82 (1) ◽  
pp. 405-412 ◽  
Author(s):  
Sasha J. Rose ◽  
Luiz E. Bermudez

ABSTRACTMycobacterium aviumsubsp.hominissuisis an opportunistic human pathogen that has been shown to form biofilmin vitroandin vivo. Biofilm formationin vivoappears to be associated with infections in the respiratory tract of the host. The reasoning behind howM. aviumsubsp.hominissuisbiofilm is allowed to establish and persist without being cleared by the innate immune system is currently unknown. To identify the mechanism responsible for this, we developed anin vitromodel using THP-1 human mononuclear phagocytes cocultured with establishedM. aviumsubsp.hominissuisbiofilm and surveyed various aspects of the interaction, including phagocyte stimulation and response, bacterial killing, and apoptosis.M. aviumsubsp.hominissuisbiofilm triggered robust tumor necrosis factor alpha (TNF-α) release from THP-1 cells as well as superoxide and nitric oxide production. Surprisingly, the hyperstimulated phagocytes did not effectively eliminate the cells of the biofilm, even when prestimulated with gamma interferon (IFN-γ) or TNF-α or cocultured with natural killer cells (which have been shown to induce anti-M. aviumsubsp.hominissuisactivity when added to THP-1 cells infected with planktonicM. aviumsubsp.hominissuis). Time-lapse microscopy and the TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay determined that contact with theM. aviumsubsp.hominissuisbiofilm led to early, widespread onset of apoptosis, which is not seen until much later in planktonicM. aviumsubsp.hominissuisinfection. Blocking TNF-α or TNF-R1 during interaction with the biofilm significantly reduced THP-1 apoptosis but did not lead to elimination ofM. aviumsubsp.hominissuis. Our data collectively indicate thatM. aviumsubsp.hominissuisbiofilm induces TNF-α-driven hyperstimulation and apoptosis of surveilling phagocytes, which prevents clearance of the biofilm by cells of the innate immune system and allows the biofilm-associated infection to persist.


2001 ◽  
Vol 183 (3) ◽  
pp. 223-227 ◽  
Author(s):  
Horst Claassen ◽  
Joachim Hassenpflug ◽  
Michael Schünke ◽  
Walter Sierralta ◽  
Hubert Thole ◽  
...  

2003 ◽  
Vol 23 (1) ◽  
pp. 335-348 ◽  
Author(s):  
Mari Luz Acevedo ◽  
W. Lee Kraus

ABSTRACT Ligand-dependent transcriptional activation by nuclear receptors involves the recruitment of various coactivators to the promoters of hormone-regulated genes assembled into chromatin. Nuclear receptor coactivators include histone acetyltransferase complexes, such as p300/CBP-steroid receptor coactivator (SRC), as well as the multisubunit mediator complexes (“Mediator”), which may help recruit RNA polymerase II to the promoter. We have used a biochemical approach, including an in vitro chromatin assembly and transcription system, to examine the functional role for Mediator in the transcriptional activity of estrogen receptor α (ERα) with chromatin templates, as well as functional interplay between Mediator and p300/CBP during ERα-dependent transcription. Using three different approaches to functionally inactivate Mediator (immunoneutralization, immunodepletion, and inhibitory polypeptides), we find that Mediator is required for maximal transcriptional activation by ligand-activated ERα. In addition, we demonstrate synergism between Mediator and p300/CBP-SRC during ERα-dependent transcription with chromatin templates, but not with naked DNA. This synergism is important for promoting the formation of a stable transcription preinitiation complex leading to the initiation of transcription. Interestingly, we find that Mediator has an additional distinct role during ERα-dependent transcription not shared by p300/CBP-SRC: namely, to promote preinitiation complex formation for subsequent rounds of transcription reinitiation. These results suggest that one functional consequence of Mediator-ERα interactions is the stimulation of multiple cycles of transcription reinitiation. Collectively, our results indicate an important role for Mediator, as well as its functional interplay with p300/CBP-SRC, in the enhancement of ERα-dependent transcription with chromatin templates.


2014 ◽  
Vol 10 (6) ◽  
pp. 3125-3131 ◽  
Author(s):  
CONG-JUN WANG ◽  
DE-KAI GUO ◽  
TIAN-GENG YOU ◽  
DONG-WEI SHEN ◽  
CHAO WANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document