A plane‐wave decomposition for elastic wave fields applied to the separation of P‐waves and S‐waves in vector seismic data

Geophysics ◽  
1986 ◽  
Vol 51 (2) ◽  
pp. 419-423 ◽  
Author(s):  
A. J. Devaney ◽  
M. L. Oristaglio

We describe a method to decompose a two‐dimensional (2-D) elastic wave field recorded along a line into its longitudinal and transverse parts, that is, into compressional (P) waves and shear (S) waves. Separation of the data into P-waves and S-waves is useful when analyzing vector seismic measurements along surface lines or in boreholes. The method described is based on a plane‐wave expansion for elastic wave fields and is illustrated with a synthetic example of an offset vertical seismic profile (VSP) in a layered elastic medium.

Geophysics ◽  
1989 ◽  
Vol 54 (10) ◽  
pp. 1339-1343 ◽  
Author(s):  
S. C. Singh ◽  
G. F. West ◽  
C. H. Chapman

The delay‐time (τ‐p) parameterization, which is also known as the plane‐wave decomposition (PWD) of seismic data, has several advantages over the more traditional time‐distance (t‐x) representation (Schultz and Claerbout, 1978). Plane‐wave seismograms in the (τ, p) domain can be used for obtaining subsurface elastic properties (P‐wave and S‐wave velocities and density as functions of depth) from inversion of the observed oblique‐incidence seismic data (e.g., Yagle and Levy, 1985; Carazzone, 1986; Carrion, 1986; Singh et al., 1989). Treitel et al. (1982) performed time migration of plane‐wave seismograms. Diebold and Stoffa (1981) used plane‐wave seismograms to derive a velocity‐depth function. Decomposing seismic data also allows more rapid modeling, since it is faster to compute synthetic seismograms in the (τ, p) than in the (t, x) domain. Unfortunately, the transformation of seismic data from the (t, x) to the (τ, p) domain may produce artifacts, such as those caused by discrete sampling, of the data in space.


Geophysics ◽  
1990 ◽  
Vol 55 (3) ◽  
pp. 378-379 ◽  
Author(s):  
Douglas W. McCowan

Mithal and Vera give the impression that the correct cylindrically symmetric slant stack (e.g., Chapman, 1981; Harding, 1985; Brysk and McCowan, 1986a) needed to represent point‐source radiation in vertically stratified media is both expensive and unnecessary in ordinary data analysis.


Geophysics ◽  
1990 ◽  
Vol 55 (3) ◽  
pp. 379-379 ◽  
Author(s):  
Rakesh Mithal ◽  
Emilio E. Vera

In his discussion, McGowan directs his attention exclusively to which method should be used to produce a plane-wave decomposition of point-source seismic data. Although the choice of method is an important point, it was not the main emphasis of our paper which, as its title indicates, was the comparison between plane-wave decomposition (cylindrical slant stacking) and simple slant stacking. We demonstrated the differences between these two processes and clearly indicated the necessity of using cylindrical slant stacking in order to get the correct plane-wave reflection response of point-source data. McGowan criticizes our method because it makes use of the standard asymptotic approximation of the Bessel function [Formula: see text] and considers only outward traveling waves. In our paper we acknowledged that these simplifications do not produce accurate results for ray parameters near zero and explicitly mentioned the method of Brysk and McGowan (1986) as a suitable alternative to deal with this problem.


Geophysics ◽  
1997 ◽  
Vol 62 (6) ◽  
pp. 1774-1778 ◽  
Author(s):  
Robert S. Pawlowski

The slant‐stack technique (also known as Radon transform, τ-p transform, and plane‐wave decomposition) used in seismic data processing for discriminating between and separating seismic events of differing dips (or moveout) is applied here to the problem of geologic or geophysical map lineament analysis. The latter problem is analogous to the seismic coherent noise problem in the sense that lineaments associated with one geologic event or episode are often underprinted by the lineaments of preceding geologic disturbances and overprinted by the lineaments of subsequent disturbances. Consequently, it can be difficult to distinguish between the individual lineament sets.


Geophysics ◽  
1987 ◽  
Vol 52 (12) ◽  
pp. 1631-1638 ◽  
Author(s):  
Rakesh Mithal ◽  
Emilio E. Vera

The plane‐wave decomposition and slant stacking of point‐source seismic data are not identical processes; they are, however, related. We have found that the algorithm for slant stacking can be used for plane‐wave decomposition if we apply a weighting function (depending on frequency and offset, and including a π/4 phase shift) before slant stacking, and a p-dependent correction after the slant stacking. This procedure requires only a small extra effort to incorporate the geometrical spreading and phase shift not accounted for by the slant stacking. In this process we use the asymptotic approximation for the zeroth‐order Bessel function. This approximation reduces the number of computations significantly, but it is valid only for ωpx greater than 2 or 3. Using this approximation, we have been able to obtain the correct plane‐wave decomposition of expanding spread profile data for ray parameters as low as 0.03 s/km; for smaller p, the exact Bessel function should be used. We have performed model studies to compare plane‐wave decomposition and slant stacking. Using a possible velocity model for the North Atlantic Transect (NAT) expanding spread profile (ESP 5), we computed synthetic seismograms at a 50 m spacing using the reflectivity method, and then computed the plane‐wave decomposition and slant stacks of these seismograms. On comparing these with the exact τ-p seismograms for this model, we found that the waveforms, the frequency content, and the amplitudes were exactly reproduced in the plane‐wave decomposition, but were significantly different in the slant stacks. We also computed the plane‐wave decomposition and slant stacks of real data (NAT ESP 5). The results in this case show that the amplitudes of deep crustal arrivals in plane‐wave decomposition are higher than in slant stacks, and therefore these arrivals can be identified much better in the plane‐wave decomposition.


Geophysics ◽  
1981 ◽  
Vol 46 (3) ◽  
pp. 255-267 ◽  
Author(s):  
Paul L. Stoffa ◽  
Peter Buhl ◽  
John B. Diebold ◽  
Friedemann Wenzel

Marine seismic data recorded as a function of source‐receiver offset and traveltime are mapped directly to the domain of intercept or vertical delay time and horizontal ray parameter. This is a plane‐wave decomposition based on beam forming of wide‐aperture seismic array data to determine automatically the loci of coherent seismic reflection and refraction events. In this computation, semblance, in addition to the required slowness or horizontal ray parameter stack, is found for linear X — T trajectories across subarrays. Subsequently, semblance is used to derive a windowing filter that is applied to the slowness stack to determine the points of stationary phase and eliminate aliasing. The resulting filtered slowness stacks for multiple subarrays can then be linearly transformed and combined according to ray parameter, range, and time. The resulting function of intercept time and horizontal ray parameter offers significant computational and interpretational advantages for the case of horizontal homogeneous layers and leads directly to the derivation of a detailed velocity‐depth function.


Geophysics ◽  
1984 ◽  
Vol 49 (8) ◽  
pp. 1223-1238 ◽  
Author(s):  
John T. Kuo ◽  
Ting‐fan Dai

In taking into account both compressional (P) and shear (S) waves, more geologic information can likely be extracted from the seismic data. The presence of shear and converted shear waves in both land and marine seismic data recordings calls for the development of elastic wave‐migration methods. The migration method presently developed consists of simultaneous migration of P- and S-waves for offset seismic data based on the Kirchhoff‐Helmholtz type integrals for elastic waves. A new principle of simultaneously migrating both P- and S-waves is introduced. The present method, named the Kirchhoff elastic wave migration, has been tested using the 2-D synthetic surface data calculated from several elastic models of a dipping layer (including a horizontal layer), a composite dipping and horizontal layer, and two layers over a half‐space. The results of these tests not only assure the feasibility of this migration scheme, but also demonstrate that enhanced images in the migrated sections are well formed. Moreover, the signal‐to‐noise ratio increases in the migrated seismic section by this elastic wave migration, as compared with that using the Kirchhoff acoustic (P-) wave migration alone. This migration scheme has about the same order of sensitivity of migration velocity variations, if [Formula: see text] and [Formula: see text] vary concordantly, to the recovery of the reflector as that of the Kirchhoff acoustic (P-) wave migration. In addition, the sensitivity of image quality to the perturbation of [Formula: see text] has also been tested by varying either [Formula: see text] or [Formula: see text]. For varying [Formula: see text] (with [Formula: see text] fixed), the migrated images are virtually unaffected on the [Formula: see text] depth section while they are affected on the [Formula: see text] depth section. For varying [Formula: see text] (with [Formula: see text] fixed), the migrated images are affected on both the [Formula: see text] and [Formula: see text] depth sections.


1985 ◽  
Author(s):  
Julian Cabrera ◽  
Shlomo Levy ◽  
Kerry Stinson

Sign in / Sign up

Export Citation Format

Share Document