Direct mapping of seismic data to the domain of intercept time and ray parameter—A plane‐wave decomposition

Geophysics ◽  
1981 ◽  
Vol 46 (3) ◽  
pp. 255-267 ◽  
Author(s):  
Paul L. Stoffa ◽  
Peter Buhl ◽  
John B. Diebold ◽  
Friedemann Wenzel

Marine seismic data recorded as a function of source‐receiver offset and traveltime are mapped directly to the domain of intercept or vertical delay time and horizontal ray parameter. This is a plane‐wave decomposition based on beam forming of wide‐aperture seismic array data to determine automatically the loci of coherent seismic reflection and refraction events. In this computation, semblance, in addition to the required slowness or horizontal ray parameter stack, is found for linear X — T trajectories across subarrays. Subsequently, semblance is used to derive a windowing filter that is applied to the slowness stack to determine the points of stationary phase and eliminate aliasing. The resulting filtered slowness stacks for multiple subarrays can then be linearly transformed and combined according to ray parameter, range, and time. The resulting function of intercept time and horizontal ray parameter offers significant computational and interpretational advantages for the case of horizontal homogeneous layers and leads directly to the derivation of a detailed velocity‐depth function.

Geophysics ◽  
1989 ◽  
Vol 54 (10) ◽  
pp. 1339-1343 ◽  
Author(s):  
S. C. Singh ◽  
G. F. West ◽  
C. H. Chapman

The delay‐time (τ‐p) parameterization, which is also known as the plane‐wave decomposition (PWD) of seismic data, has several advantages over the more traditional time‐distance (t‐x) representation (Schultz and Claerbout, 1978). Plane‐wave seismograms in the (τ, p) domain can be used for obtaining subsurface elastic properties (P‐wave and S‐wave velocities and density as functions of depth) from inversion of the observed oblique‐incidence seismic data (e.g., Yagle and Levy, 1985; Carazzone, 1986; Carrion, 1986; Singh et al., 1989). Treitel et al. (1982) performed time migration of plane‐wave seismograms. Diebold and Stoffa (1981) used plane‐wave seismograms to derive a velocity‐depth function. Decomposing seismic data also allows more rapid modeling, since it is faster to compute synthetic seismograms in the (τ, p) than in the (t, x) domain. Unfortunately, the transformation of seismic data from the (t, x) to the (τ, p) domain may produce artifacts, such as those caused by discrete sampling, of the data in space.


Geophysics ◽  
1990 ◽  
Vol 55 (3) ◽  
pp. 378-379 ◽  
Author(s):  
Douglas W. McCowan

Mithal and Vera give the impression that the correct cylindrically symmetric slant stack (e.g., Chapman, 1981; Harding, 1985; Brysk and McCowan, 1986a) needed to represent point‐source radiation in vertically stratified media is both expensive and unnecessary in ordinary data analysis.


Geophysics ◽  
1990 ◽  
Vol 55 (3) ◽  
pp. 379-379 ◽  
Author(s):  
Rakesh Mithal ◽  
Emilio E. Vera

In his discussion, McGowan directs his attention exclusively to which method should be used to produce a plane-wave decomposition of point-source seismic data. Although the choice of method is an important point, it was not the main emphasis of our paper which, as its title indicates, was the comparison between plane-wave decomposition (cylindrical slant stacking) and simple slant stacking. We demonstrated the differences between these two processes and clearly indicated the necessity of using cylindrical slant stacking in order to get the correct plane-wave reflection response of point-source data. McGowan criticizes our method because it makes use of the standard asymptotic approximation of the Bessel function [Formula: see text] and considers only outward traveling waves. In our paper we acknowledged that these simplifications do not produce accurate results for ray parameters near zero and explicitly mentioned the method of Brysk and McGowan (1986) as a suitable alternative to deal with this problem.


Geophysics ◽  
1986 ◽  
Vol 51 (2) ◽  
pp. 419-423 ◽  
Author(s):  
A. J. Devaney ◽  
M. L. Oristaglio

We describe a method to decompose a two‐dimensional (2-D) elastic wave field recorded along a line into its longitudinal and transverse parts, that is, into compressional (P) waves and shear (S) waves. Separation of the data into P-waves and S-waves is useful when analyzing vector seismic measurements along surface lines or in boreholes. The method described is based on a plane‐wave expansion for elastic wave fields and is illustrated with a synthetic example of an offset vertical seismic profile (VSP) in a layered elastic medium.


Geophysics ◽  
1997 ◽  
Vol 62 (6) ◽  
pp. 1774-1778 ◽  
Author(s):  
Robert S. Pawlowski

The slant‐stack technique (also known as Radon transform, τ-p transform, and plane‐wave decomposition) used in seismic data processing for discriminating between and separating seismic events of differing dips (or moveout) is applied here to the problem of geologic or geophysical map lineament analysis. The latter problem is analogous to the seismic coherent noise problem in the sense that lineaments associated with one geologic event or episode are often underprinted by the lineaments of preceding geologic disturbances and overprinted by the lineaments of subsequent disturbances. Consequently, it can be difficult to distinguish between the individual lineament sets.


Geophysics ◽  
1987 ◽  
Vol 52 (12) ◽  
pp. 1631-1638 ◽  
Author(s):  
Rakesh Mithal ◽  
Emilio E. Vera

The plane‐wave decomposition and slant stacking of point‐source seismic data are not identical processes; they are, however, related. We have found that the algorithm for slant stacking can be used for plane‐wave decomposition if we apply a weighting function (depending on frequency and offset, and including a π/4 phase shift) before slant stacking, and a p-dependent correction after the slant stacking. This procedure requires only a small extra effort to incorporate the geometrical spreading and phase shift not accounted for by the slant stacking. In this process we use the asymptotic approximation for the zeroth‐order Bessel function. This approximation reduces the number of computations significantly, but it is valid only for ωpx greater than 2 or 3. Using this approximation, we have been able to obtain the correct plane‐wave decomposition of expanding spread profile data for ray parameters as low as 0.03 s/km; for smaller p, the exact Bessel function should be used. We have performed model studies to compare plane‐wave decomposition and slant stacking. Using a possible velocity model for the North Atlantic Transect (NAT) expanding spread profile (ESP 5), we computed synthetic seismograms at a 50 m spacing using the reflectivity method, and then computed the plane‐wave decomposition and slant stacks of these seismograms. On comparing these with the exact τ-p seismograms for this model, we found that the waveforms, the frequency content, and the amplitudes were exactly reproduced in the plane‐wave decomposition, but were significantly different in the slant stacks. We also computed the plane‐wave decomposition and slant stacks of real data (NAT ESP 5). The results in this case show that the amplitudes of deep crustal arrivals in plane‐wave decomposition are higher than in slant stacks, and therefore these arrivals can be identified much better in the plane‐wave decomposition.


Geophysics ◽  
1990 ◽  
Vol 55 (4) ◽  
pp. 452-457 ◽  
Author(s):  
S. L. Dobbs ◽  
C. R. Wilson ◽  
M. M. Backus

The finite length of seismic arrays results in smeared estimates of the plane‐wave decomposition of the recorded wave field. The smearing is a fundamental property of plane‐wave decomposition; it can be reduced but not eliminated. If not accounted for, this smearing can have a significant effect upon the waveform inversion of plane‐wave seismograms. This paper illustrates the effects of limited spatial aperture on the plane‐wave decomposition and demonstrates that these truncation artifacts can be described by a linear ray parameter‐dependent filter. Experiments with synthetic data indicate that including the effects of limited aperture in the forward model of an iterative inversion produces a stable inversion result without significantly reducing the information content of the data. The method is illustrated with synthetic data derived for an earth consisting of elastic, isotropic, flat layers.


2021 ◽  
Author(s):  
Pimpawee Sittipan ◽  
Pisanu Wongpornchai

Some of the important petroleum reservoirs accumulate beneath the seas and oceans. Marine seismic reflection method is the most efficient method and is widely used in the petroleum industry to map and interpret the potential of petroleum reservoirs. Multiple reflections are a particular problem in marine seismic reflection investigation, as they often obscure the target reflectors in seismic profiles. Multiple reflections can be categorized by considering the shallowest interface on which the bounces take place into two types: internal multiples and surface-related multiples. Besides, the multiples can be categorized on the interfaces where the bounces take place, a difference between long-period and short-period multiples can be considered. The long-period surface-related multiples on 2D marine seismic data of the East Coast of the United States-Southern Atlantic Margin were focused on this research. The seismic profile demonstrates the effectiveness of the results from predictive deconvolution and the combination of surface-related multiple eliminations (SRME) and parabolic Radon filtering. First, predictive deconvolution applied on conventional processing is the method of multiple suppression. The other, SRME is a model-based and data-driven surface-related multiple elimination method which does not need any assumptions. And the last, parabolic Radon filtering is a moveout-based method for residual multiple reflections based on velocity discrimination between primary and multiple reflections, thus velocity model and normal-moveout correction are required for this method. The predictive deconvolution is ineffective for long-period surface-related multiple removals. However, the combination of SRME and parabolic Radon filtering can attenuate almost long-period surface-related multiple reflections and provide a high-quality seismic images of marine seismic data.


Sign in / Sign up

Export Citation Format

Share Document