Anisotropic velocity analysis for lithology discrimination

Geophysics ◽  
1989 ◽  
Vol 54 (12) ◽  
pp. 1564-1574 ◽  
Author(s):  
B. S. Byun ◽  
D. Corrigan ◽  
J. E. Gaiser

A new velocity analysis technique is presented for analyzing moveout of signals on multichannel surface seismic or VSP data. An approximate, skewed hyperbolic moveout formula is derived for horizontally layered, transversely isotropic media. This formula involves three measurement parameters: the average vertical velocity and horizontal and skew moveout velocities. By extending Dix‐type hyperbolic moveout analysis, we obtain improved coherence over large source‐geophone offsets for more accurate moveout correction. Compared with the stacking velocity obtained by simple hyperbolic analysis methods, the three velocity parameters estimated by this technique contain more physically meaningful geologic information regarding the anisotropy and/or velocity heterogeneity of the subsurface. Synthetic P‐wave model experiments demonstrate that the skewed hyperbolic moveout formula yields an excellent fit to time‐distance curves over a wide range of ray angles. Consequently, the measurement parameters are shown to reflect adequately the characteristics of velocity dependence on ray angle, i.e., velocity anisotropy. The technique is then applied to two field offset VSP data sets to measure and analyze the velocity parameters. The results show that the apparent anisotropy, defined as the ratio between the horizontal moveout velocity and average vertical velocity, correlates reasonably well with lithology. Highly anisotropic shale and chalk exhibit higher horizontal‐to‐vertical velocity ratios and sandstones show lower ratios.

Geophysics ◽  
1980 ◽  
Vol 45 (6) ◽  
pp. 1094-1095 ◽  
Author(s):  
A. L. Lucas ◽  
P. N. S. O’Brien ◽  
J. H. Thomas

In transversely isotropic media, the moveout velocity obtained from common‐depth‐point (CDP) analysis may be significantly different from the horizontal velocity of the pseudo‐P wave. In Levin’s (1978) paper, he discusses, among other things, the problem of velocity determination in a medium in which the pseudo‐P wave surface produced by a point source is an ellipsoid of revolution. He points out that one would expect many sedimentary rocks to be transversely isotropic with a vertical axis of symmetry. In his Appendix he proves that an ellipse (using two dimensions for convenience) is one possible shape for the wave surface in such a medium. He also shows, as have others, that in this case CDP velocity analysis measures the velocity of horizontal propagation.


Geophysics ◽  
2021 ◽  
pp. 1-49
Author(s):  
Mohammad Mahdi Abedi ◽  
David Pardo

Large-offset seismic data processing, imaging, and velocity estimation require an accurate traveltime approximation over a wide range of offsets. In layered transversely isotropic media with vertical symmetry axis (VTI), the accuracy of traditional traveltime approximations is limited to near offsets. Herein, we propose a new traveltime approximation that maintains the accuracy of the classical equations around zero offset, and exhibits the correct curvilinear asymptote at infinitely large offsets. Our approximation is based on the conventional acoustic assumption. Its equation incorporates six parameters. To define them, we use the Taylor series expansion of the exact traveltime around zero offset, and a new asymptotic series for infinite offset. Our asymptotic equation shows that the traveltime behavior at infinitely large offsets is dominated by the properties of the layer with the maximum horizontal velocity in the sequence. The parameters of our approximation depend on: the effective zero offset traveltime, the normal moveout velocity, the anellipticity, a new large-offset heterogeneity parameter, and the properties of the layer with the maximum horizontal velocity in the sequence. We apply our traveltime approximation: (1) to directly calculate traveltime and ray parameter at given offsets, as analytical forward modeling; and (2) to estimate the first four of the aforementioned parameters for the layers beneath a known high-velocity layer. Our large-offset heterogeneity parameter includes the layering effect on the reflections traveltime.


Geophysics ◽  
2013 ◽  
Vol 78 (1) ◽  
pp. C11-C23 ◽  
Author(s):  
Xiaoxiang Wang ◽  
Ilya Tsvankin

Reflection tomography in the migrated domain can help reconstruct heterogeneous, anisotropic velocity fields needed for accurate depth imaging of complex geologic structures. The presence of anisotropy, however, increases the uncertainty in velocity analysis and typically requires a priori constraints on the model parameters. Here, we develop a 2D P-wave tomographic algorithm for heterogeneous transversely isotropic media with a tilted symmetry axis (TTI) and investigate the conditions necessary for stable estimation of the symmetry-direction velocity [Formula: see text] and the anisotropy parameters [Formula: see text] and [Formula: see text]. The model is divided into rectangular cells, and the parameters [Formula: see text], [Formula: see text], [Formula: see text], and the tilt [Formula: see text] of the symmetry axis are defined at the grid points. To increase the stability of the inversion, the symmetry axis is set orthogonal to the imaged reflectors, with the tilt interpolated inside each layer. The iterative migration velocity analysis involves efficient linearized parameter updating designed to minimize the residual moveout in image gathers for all available reflection events. The moveout equation in the depth-migrated domain includes a nonhyperbolic term that describes long-offset data, which are particularly sensitive to [Formula: see text]. Synthetic tests for models with a “quasi-factorized” TTI syncline (i.e., [Formula: see text] and [Formula: see text] are constant inside the anisotropic layer) and a TTI thrust sheet demonstrate that stable parameter estimation requires either strong smoothness constraints or additional information from walkaway VSP (vertical seismic profiling) traveltimes. If the model is quasi-factorized with a linear spatial variation of [Formula: see text], it may be possible to obtain the interval TTI parameters just from long-spread reflection data.


Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. T51-T62 ◽  
Author(s):  
Qi Hao ◽  
Alexey Stovas ◽  
Tariq Alkhalifah

Analytic representation of the offset-midpoint traveltime equation for anisotropy is very important for prestack Kirchhoff migration and velocity inversion in anisotropic media. For transversely isotropic media with a vertical symmetry axis, the offset-midpoint traveltime resembles the shape of a Cheops’ pyramid. This is also valid for homogeneous 3D transversely isotropic media with a horizontal symmetry axis (HTI). We extended the offset-midpoint traveltime pyramid to the case of homogeneous 3D HTI. Under the assumption of weak anellipticity of HTI media, we derived an analytic representation of the P-wave traveltime equation and used Shanks transformation to improve the accuracy of horizontal and vertical slownesses. The traveltime pyramid was derived in the depth and time domains. Numerical examples confirmed the accuracy of the proposed approximation for the traveltime function in 3D HTI media.


Geophysics ◽  
1995 ◽  
Vol 60 (1) ◽  
pp. 268-284 ◽  
Author(s):  
Ilya Tsvankin

Description of reflection moveout from dipping interfaces is important in developing seismic processing methods for anisotropic media, as well as in the inversion of reflection data. Here, I present a concise analytic expression for normal‐moveout (NMO) velocities valid for a wide range of homogeneous anisotropic models including transverse isotropy with a tilted in‐plane symmetry axis and symmetry planes in orthorhombic media. In transversely isotropic media, NMO velocity for quasi‐P‐waves may deviate substantially from the isotropic cosine‐of‐dip dependence used in conventional constant‐velocity dip‐moveout (DMO) algorithms. However, numerical studies of NMO velocities have revealed no apparent correlation between the conventional measures of anisotropy and errors in the cosine‐of‐dip DMO correction (“DMO errors”). The analytic treatment developed here shows that for transverse isotropy with a vertical symmetry axis, the magnitude of DMO errors is dependent primarily on the difference between Thomsen parameters ε and δ. For the most common case, ε − δ > 0, the cosine‐of‐dip–corrected moveout velocity remains significantly larger than the moveout velocity for a horizontal reflector. DMO errors at a dip of 45 degrees may exceed 20–25 percent, even for weak anisotropy. By comparing analytically derived NMO velocities with moveout velocities calculated on finite spreads, I analyze anisotropy‐induced deviations from hyperbolic moveout for dipping reflectors. For transversely isotropic media with a vertical velocity gradient and typical (positive) values of the difference ε − δ, inhomogeneity tends to reduce (sometimes significantly) the influence of anisotropy on the dip dependence of moveout velocity.


Sign in / Sign up

Export Citation Format

Share Document