ellipsoid of revolution
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 18)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
pp. 12-29
Author(s):  
Vladimir Vyshnyepolskiy ◽  
E. Zavarihina ◽  
D. Peh

The article deals with the geometric locations of points equidistant from two spheres. In all variants of the mutual position of the spheres, the geometric places of the points are two surfaces. When the centers of the spheres coincide with the locus of points equidistant from the spheres, there will be spheres equal to the half-sum and half-difference of the diameters of the original spheres. In three variants of the relative position of the initial spheres, one of the two surfaces of the geometric places of the points is a two-sheet hyperboloid of revolution. It is obtained when: 1) the spheres intersect, 2) the spheres touch, 3) the outer surfaces of the spheres are removed from each other. In the case of equal spheres, a two-sheeted hyperboloid of revolution degenerates into a two-sheeted plane, more precisely, it is a second-order degenerate surface with a second infinitely distant branch. The spheres intersect - the second locus of the points will be the ellipsoid of revolution. Spheres touch - the second locus of points - an ellipsoid of revolution, degenerated into a straight line, more precisely into a zero-quadric of the second order - a cylindrical surface with zero radius. The outer surfaces of the spheres are distant from each other - the second locus of points will be a two-sheet hyperboloid of revolution. The small sphere is located inside the large one - two coaxial confocal ellipsoids of revolution. In all variants of the mutual position of spheres of the same diameters, the common geometrical place of equidistant points is a plane (degenerate surface of the second order) passing through the middle of the segment perpendicular to it, connecting the centers of the original spheres. The second locus of points equidistant from two spheres of the same diameter can be either an ellipsoid of revolution (if the original spheres intersect), or a straight (cylindrical surface with zero radius) connecting the centers of the original spheres when the original spheres touch each other, or a two-sheet hyperboloid of revolution (if continue to increase the distance between the centers of the original spheres).


2021 ◽  
pp. 162-165
Author(s):  
D.V. Kudin ◽  
V.M. Ostroushko ◽  
A.V. Pashchenko ◽  
S.V. Rodionov ◽  
M.O. Yegorov ◽  
...  

Drift and diffusion of ions in a cavity having the shape of oblate ellipsoid of revolution are considered. The obtained approximate relationship, between the time of drift and diffusion filling of deep cavity with ions, contains the applied voltage and the ratio of cavity size to the distance between electrodes. It shows that in the performed experiments with the device for water capacitive deionization the filling of electrodes by ions was carried out, mainly, due to diffusion.


2021 ◽  
Vol 972 (6) ◽  
pp. 17-25
Author(s):  
M.V. Nyrtsov ◽  
M.E. Fleis

There are generally accepted classifications of cartographic projections of a sphere and an ellipsoid of revolution according to various criteria. The projections of a triaxial ellipsoid have a number of differences from those of a sphere and an ellipsoid of revolution; therefore, the existing classifications need to be clarified. The definitions of the main classes of cartographic projections of a sphere and an ellipsoid of revolution by the type of cartographic grid cannot be extended to those of a triaxial ellipsoid. At the same time, the traditional approach with the auxiliary surface is maintained. To obtain projections of a triaxial ellipsoid in transverse orientation, there is no need to recalculate through polar spherical coordinates as is done for those of a sphere and an ellipsoid of revolution. The transition is carried out by rotating the ellipsoid around the axes, which is much easier. In the classification of the projections of a triaxial ellipsoid according to the distortions, it is necessary to distinguish conformal, quasiconformal, equal-area projections and the ones which preserve lengths along the meridians.


2021 ◽  
Vol 968 (2) ◽  
pp. 11-22
Author(s):  
M.V. Nyrtsov ◽  
M.E. Fleis ◽  
A.I. Sokolov

Historically the conformal projections have been used for mapping not only the Earth, but other celestial bodies as well. Their application enables preserving the shape of the relief features on the maps, which is extremely important for various analyses of celestial bodies’ surfaces. For many small bodies of the Solar system the International Astronomical Union recommends to apply a triaxial ellipsoid as a reference surface. But if the conformal projections for the reference surfaces of a sphere and an ellipsoid of revolution already exist, obtaining these projections for a triaxial ellipsoid will be significantly complicated, and the task of preserving the shape of relief features still actual. In general, the article deals with cylindrical and azimuthal projections of the meridian section for global mapping the celestial body surface in accordance with the idea formulated by prof. L. M. Bugaevsky. The projections are implemented for mapping of Phobos, moon of Mars.


Author(s):  
И.А. Кузнецова ◽  
О.В. Савенко ◽  
Д.Н. Романов

The problem of the conductivity of a thin conductive nanolayer is solved taking into account the quantum theory of transport processes. The layer thickness can be comparable to or less than the de Broglie wavelength of charge carriers. The constant-energy surface has the form of an ellipsoid of revolution with the main axis parallel to the layer plane. Analytical expressions are obtained for the conductivity tensor components as a function of dimensionless thickness, chemical potential, ellipticity parameter, and surface roughness parameters. The conductivity analysis for the limiting cases of a degenerate and non-degenerate electron gas are conducted. The results are compared with known experimental data for a silicon layer.


Author(s):  
Nickolay V. Egorov ◽  
◽  
Ekaterina M. Vinogradova ◽  

In this paper the mathematical modeling of the triode emission axially symmetric system on the basis of field emitter is considered. Emitter is an ellipsoid of revolution, anode is a confocal ellipsoidal surface of revolution. Modulator is a part of the ellipsoidal surface of revolution, confocal with the cathode and anode surfaces. The boundary-value problem for the Laplace's equation in the prolate spheroidal coordinates with the boundary conditions of the first kind is solved. The variable separation method is applied to calculate the axisymmetrical electrostatic potential distribution. The potential distribution is represented as the Legendre functions expansion. The expansion coefficients are the solution of the system of linear equations. All geometrical dimensions of the system are the parameters of the problem.


2021 ◽  
Vol 37 ◽  
pp. 00046
Author(s):  
S.O. Fatyanov ◽  
A.P. Pustovalov ◽  
V.M. Pashchenko ◽  
A.S. Morozov ◽  
E.S. Semina

The use of non-medicamentous means of treating farm animals presupposes the presence of not only an ultra-high frequency electromagnetic radiation generator but also a rectal emitter, which is directly inserted into the animal's rectum. The effectiveness of the treatment carried out using UHF therapy methods largely depends on the shape of the emitter tip. When choosing the external shape of the emitter tip in the form of half of an ellipsoid of revolution, it becomes necessary to optimize the parameters of this ellipsoid. The goal of optimization is to minimize the resistance force of the living tissue of the animal when a cylindrical emitter with a tip is inserted into the rectum.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2933
Author(s):  
Oleg Stolbov ◽  
Yuriy Raikher

Magnetostriction effect, i.e., deformation under the action of a uniform applied field, is analyzed to detail for a spherical sample of a magnetoactive elastomer (MAE). A close analogy with the field-induced elongation of spherical ferrofluid droplets implies that similar characteristic effects viz. hysteresis stretching and transfiguration into a distinctively nonellipsoidal bodies, should be inherent to MAE objects as well. The absence until now of such studies seems to be due to very unfavorable conclusions which follow from the theoretical estimates, all of which are based on the assumption that a deformed sphere always retains the geometry of ellipsoid of revolution just changing its aspect ratio under field. Building up an adequate numerical modelling tool, we show that the ‘ellipsoidal’ approximation is misleading beginning right from the case of infinitesimal field strengths and strain increments. The results obtained show that the above-mentioned magnetodeformational effect should distinctively manifest itself in the objects made of quite ordinary MAEs, e.g., composites on the base of silicone cautchouc filled with micron-size carbonyl iron powder.


Sign in / Sign up

Export Citation Format

Share Document