Regional‐residual gravity anomaly separation using the minimum‐curvature technique

Geophysics ◽  
1991 ◽  
Vol 56 (2) ◽  
pp. 279-283 ◽  
Author(s):  
K. L. Mickus ◽  
C. L. V. Aiken ◽  
W. D. Kennedy

One of the most difficult problems in gravity interpretation is the separation of regional and residual gravity anomalies from the Bouguer gravity anomaly. This study discusses the application of the minimum‐curvature method to determine the regional and residual gravity anomalies.

Geophysics ◽  
1954 ◽  
Vol 19 (1) ◽  
pp. 76-88
Author(s):  
C. H. G. Oldham

A gravity survey and a survey of rock densities have been carried out over an area of two thousand square miles near Parry Sound. A closed positive Bouguer gravity anomaly of thirty milligals was delineated, and a considerable variation was found to exist in the densities of pre‐Cambrian gneisses. In most previous interpretations of gravity over the Canadian Shield the gneisses have been assumed to possess a uniform density and anomalies have been attributed to changes in the thickness of horizontal crustal layers. In this paper it is shown that the Parry Sound anomaly can be explained in terms of structures within the crust taking the form of projections downward of the density variations found at the surface. The postulated structure is a nearly circular basin of dense gneisses. The shape is reasonable and agrees with such geological evidence as is available.


GeoArabia ◽  
2014 ◽  
Vol 19 (1) ◽  
pp. 143-158
Author(s):  
Mohammed Y. Ali ◽  
Anthony B. Watts ◽  
Asam Farid

ABSTRACT Gravity measurements onshore and offshore of the United Arab Emirates (UAE) have been used to construct a new Bouguer gravity anomaly map of the region. The gravity data, which has been gridded at 2,700 m × 2,700 m interval, has been used to constrain the tectonic elements, major lineation trends and structures of the Neoproterozoic basement of the Arabian Plate and the distribution of infra-Cambrian salt basins. Advanced transformation techniques (including first vertical derivative, total horizontal derivative, tilt derivative and Euler deconvolution) were applied to identify gravity source edges as an aid to structural interpretation and geological modelling of the study area. Three major structural provinces (fold-and-thrust belt, foreland and salt tectonic provinces) were identified based on the residual Bouguer gravity anomaly field. The eastern fold-and-thrust belt province is associated with short-wavelength positive gravity anomalies, which are attributed to the allochthonous series of the Semail Ophiolite and its related thrust sheets. The central foreland basin province is characterised by NNW-oriented negative gravity anomalies associated with deepening of the basement and thickening of Aruma and Pabdeh sediments in the foredeep basins and flexure of the top and base of the crust by the load of the Semail Ophiolite. The western salt tectonic province displays well-defined local gravity lows superimposed on a regional gravity high, which probably reflects the swelling of infra-Cambrian salt above a shallowing of the basement and thinning of the foredeep sediments. In addition, gravity modelling constrained by seismic and well data indicates the presence of substantial infra-Cambrian salt bodies in all basins of the UAE both onshore and offshore including the southern area of the Rub’ Al-Khali Basin. An extensive array of previously unmapped N-S, NW- and SW-trending lineaments affecting the basement and possibly overlying sediments are mapped in the UAE. The N-S Arabian trending lineament represents the effect of a major structure, along which many important oilfields are located (e.g. Bu Hasa). The SW trend has regular spacing and is dominant in the southern and central part of Abu Dhabi, east of the Falaha syncline. The NW-SE lineament is the most striking and includes two well-defined trends that cross Abu Dhabi Emirate, which in this paper are named as the Abu Dhabi Lineaments. These lineaments are associated with a linear gravity high extending from the southwestern border with Oman to the offshore close to Zakum oilfield. They are probably related to the Najd Fault System.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. G45-G55 ◽  
Author(s):  
Juan García-Abdeslem

The flexural isostatic response to surface loads is used to estimate the crustal thickness in northwestern Mexico and Southwestern USA. This estimate is used to compute an isostatic regional gravity, which, subtracted from Bouguer gravity anomalies, led to the isostatic residual gravity anomaly at Montage Basin. This basin is located between the southern portion of the Mexicali Valley and the northern Gulf of California, it roughly has an extension of [Formula: see text] wide, and it shows a gravity minimum reaching approximately [Formula: see text]. Montage Basin is within the extensional province of the Gulf of California, where rifting is currently an ongoing geologic process, and deep exploratory wells drilled by Petróleos Mexicanos have shown that the basin accommodates thick sedimentary sequences greater than 5 km. The interpretation of the isostatic residual gravity anomaly is considered as a nonlinear inverse problem, constrained using density as a function of depth derived from Gardner’s equation applied to dual time [Formula: see text]-logs, assuming isostatic equilibrium and considering the basin as a subsurface load that is compensated at depth by a mass of unknown shape and density. The outcome of the inverse problem suggests that Montage Basin accommodates as much as 7.5 km thick sedimentary sequences and a compensating mass at a minimum depth of 13 km.


2017 ◽  
Vol 28 (2) ◽  
pp. 97-107
Author(s):  
Saad Bakkali

Image processing is a powerful tool for the enhancement of edges in images used in the interpretation of geophysical potential field data. Arial and terrestrial gravimetric surveys were carried out in the region of Tangier-Tetuan. From the observed and measured data of gravity Bouguer gravity anomalies map was prepared. This paper reports the results and interpretations of the transformed maps of Bouguer gravity anomaly of the Tangier-Tetuan area using the logarithmic image processing. Filtering analysis based on classical image process was applied. Operator image process like the logarithmic operator and the associated gamma correction tool are used. This paper also present the results obtained from this image processing analysis of the enhancement edges of the Bouguer gravity anomaly map of the Tangier-Tetuan zone.


Sign in / Sign up

Export Citation Format

Share Document