Nonlinear inversion of isostatic residual gravity data from Montage Basin, northern Gulf of California

Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. G45-G55 ◽  
Author(s):  
Juan García-Abdeslem

The flexural isostatic response to surface loads is used to estimate the crustal thickness in northwestern Mexico and Southwestern USA. This estimate is used to compute an isostatic regional gravity, which, subtracted from Bouguer gravity anomalies, led to the isostatic residual gravity anomaly at Montage Basin. This basin is located between the southern portion of the Mexicali Valley and the northern Gulf of California, it roughly has an extension of [Formula: see text] wide, and it shows a gravity minimum reaching approximately [Formula: see text]. Montage Basin is within the extensional province of the Gulf of California, where rifting is currently an ongoing geologic process, and deep exploratory wells drilled by Petróleos Mexicanos have shown that the basin accommodates thick sedimentary sequences greater than 5 km. The interpretation of the isostatic residual gravity anomaly is considered as a nonlinear inverse problem, constrained using density as a function of depth derived from Gardner’s equation applied to dual time [Formula: see text]-logs, assuming isostatic equilibrium and considering the basin as a subsurface load that is compensated at depth by a mass of unknown shape and density. The outcome of the inverse problem suggests that Montage Basin accommodates as much as 7.5 km thick sedimentary sequences and a compensating mass at a minimum depth of 13 km.

Geophysics ◽  
1991 ◽  
Vol 56 (2) ◽  
pp. 279-283 ◽  
Author(s):  
K. L. Mickus ◽  
C. L. V. Aiken ◽  
W. D. Kennedy

One of the most difficult problems in gravity interpretation is the separation of regional and residual gravity anomalies from the Bouguer gravity anomaly. This study discusses the application of the minimum‐curvature method to determine the regional and residual gravity anomalies.


Author(s):  
Maulana Rizki Aditama ◽  
Huzaely Latief Sunan ◽  
FX Anjar Tri Laksono ◽  
Gumilar Ramadhan ◽  
Sachrul Iswahyudi ◽  
...  

The thickness of the liquefable layer can be the factor inducing liquefaction hazard, apart from seismicity. Several studies have been conducted to predict the possibility of the liquefable layer based on the filed sampling. However, a detailed investigation of the subsurface interpretation has not been defined, in particular the thickness estimation of the liquefable layer. This study is carried out in south Cilacap area where potential liquefaction is exists due to the earthquake history data and near surface condition. The aim of this study is to investigate the physical properties and thickness distribution using GGMplus gravity data and resistivity data. This research is conducted by spectrum analysis of gravity model and 2D resistivity model . This study’s main results is by performing the residual gravity anomaly with the associated SRTM/DEM data to define the subsurface physical distribution and structural orientation of the area. Residual gravity anomaly is also separated through the low pass filter in order to have robust interpretation. The residual anomaly indicates that the area has identical structural pattern with geological and SRTM map. The results show a pattern of high gravity index in the northeast area of ​​the study having range of 70 – 115 MGal gravity index, associated with the volcanic breccia, and a low gravity profile with less than 65 in the southwest, associated with the alluvial and water table dominated distribution. The thickness of Alluvial is determined by resistivity model with H1 at a range of 3 meters and H2 at a range of 4 m. This research is included in the potential liquefaction category with the potential for a large earthquake.


2020 ◽  
Vol 25 (4) ◽  
pp. 463-476
Author(s):  
Ata Eshaghzadeh ◽  
Alireza Hajian

This paper presents an improved nature-based algorithm, namely multivariable modified teaching learning based optimization (MM-TLBO) algorithm, as in an iterative process can estimates the best values for the model parameters in a multi-objective problem. The algorithm works in two computational phases: the teacher phase and the learner phase. The major purpose of the MM-TLBO algorithm is to improve the value of the learners and thus, improving the value of the model parameters which leads to the optimal solution. The variables of each learner (model) are the radius ( R), depth ( h), shape factor ( q), density contrast ( ρ) and axis location ( x0) parameters. We apply MM-TLBO and TLBO methods for the residual gravity anomalies caused by the buried masses with a simple geometry such as spheres, horizontal and vertical cylinders. The efficiency of these methods are also tested by noise corruption synthetic data, as the acceptable results were obtained. The obtained results indicate the better performance the MM-TLBO algorithm than the TLBO algorithm. We have utilized the MM-TLBO for the interpretation of the six residual gravity anomaly profiles from Iran, USA, Sweden and Senegal. The advantage of the MM-TLBO inversion is that it can estimates the best solutions very fast without falling into local minimum and reaches to a premature convergence. The considered primary population for the synthetic and real gravity data are thirty and fifty models. The results show which this method is able to achieve the optimal responses even if a small population of learners had been considered.


Geophysics ◽  
1990 ◽  
Vol 55 (3) ◽  
pp. 376-377 ◽  
Author(s):  
El‐Sayed M. Abdelrahman

In the article by Gupta, the problem of depth determination of a buried structure from the residual gravity anomaly has been transformed into a problem of finding the solution of a nonlinear equation of the form f(z) = 0. Gupta begins his formulation of the problem with equation (1) from Mettleton (1942) Eq. (1) [Formula: see text]


2019 ◽  
Vol 37 (2) ◽  
Author(s):  
Gilberto Carneiro dos Santos Junior ◽  
Cristiano Mendel Martins ◽  
Nelson Ribeiro-Filho

ABSTRACT. Dealing with gravity data at complex geological environments is a hard task because regional and residual anomalies are unknown. Due to the fact former techniques do not apply geologic information for separating gravity data, interpretation could lead to common mistakes. In order to allow a better interpretation at sedimentary basins, we applied a different approach for separating regional and residual anomalies for gravity data: the crustal modeling procedure. This approach consists on discretizing the Earth’s crust in prismatic cells and calculating the predicted signal due to Earth’s crust. We set horizontal dimensions of each prism, while the top and bottom are defined by Earth’s topography and depth of crust-mantle boundary, usually called Moho. Additionally, when the predicted signal is calculated, the residual anomaly is obtained from simple subtraction. We applied our methodology at Marajó basin (North, Brazil), where previous geological studies identified a system of faults and grabens, also known as Marajó graben system. Moreover, our results are well compared with previous interpretation through the seismic method, exemplifying the approach’s quality and efficiency. We believe, therefore, that the crustal modeling approach should be considered for studying any Brazilian sedimentary basin and other interesting areas.Keywords: crustal modeling; residual gravity anomaly; Marajó basin; Marajó graben system. RESUMO. Interpretar dados gravimétricos em ambientes geológicos de grande complexidade é uma tarefa difícil de ser realizada, visto que anomalias regionais e residuais são desconhecidas. Devido ao fato de que conhecidas técnicas de separação regional-residual não consideram informações geológicas, a interpretação final pode fornecer resultados equivocados. A fim de permitir uma melhor interpretação nas bacias sedimentares, aplicamos uma diferente abordagem para separação regional-residual: a modelagem crustal. Esta abordagem consiste em discretizar a crosta terrestre em células prismáticas e calcular o sinal regional predito. Definimos as dimensões horizontais de cada prisma, enquanto o topo e a base são definidos pela topografia e profundidade da interface crosta-manto, respectivamente. Após o cálculo do sinal predito, a anomalia residual é calculada via subtração. Aplicamos nossa metodologia na bacia do Marajó (região Norte, Brasil), onde estudos geológicos identificaram um sistema de falhas e grábens, definido por sistema de gráben do Marajó. Nossos resultados apresentam boa correspondência quando comparados com interpretações realizadas via método sísmico, o que exemplifica a qualidade e eficiência da nossa proposta. Acreditamos, portanto, que esta abordagem de modelagem crustal deve ser considerada para o estudo de qualquer bacia sedimentar brasileira e de outras regiões de interesse.Palavras-chave: modelagem crustal; anomalia gravimétrica residual; bacia do Marajó; sistema de gráben do Marajó.  


Geophysics ◽  
1995 ◽  
Vol 60 (2) ◽  
pp. 589-590 ◽  
Author(s):  
El‐Sayed M. Abdelrahman ◽  
Sharafeldin M. Sharafeldin

The gravity anomaly expression produced by most geologic structures can be represented by a continuous function of both shape (shape‐factor) and depth‐related variables with an amplitude coefficient related to mass (Abdelrahman and El‐Araby, 1993). Few methods have been developed to determine the shape of the buried geologic structure from residual gravity anomaly profiles. These methods include a Walsh transform approach (Shaw and Agarwal, 1990) and the employment of a correlation factor between successive least‐squares residuals (Abdelrahman and El‐Araby 1993). In the present note, a least‐squares minimization approach to shape‐factor determination from a residual gravity anomaly profile is presented. The problem of the shape‐factor determination is transformed into the problem of finding a solution of a nonlinear equation of the form f(q) = 0.


2021 ◽  
Author(s):  
◽  
Alistair Stronach

<p><b>New Zealand’s capital city of Wellington lies in an area of high seismic risk, which is further increased by the sedimentary basin beneath the Central Business District (CBD). Ground motion data and damage patterns from the 2013 Cook Strait and 2016 Kaikōura earthquakes indicate that two- and three-dimensional amplification effects due to the Wellington sedimentary basin may be significant. These effects are not currently accounted for in the New Zealand Building Code. In order for this to be done, three-dimensional simulations of earthquake shaking need to be undertaken, which requires detailed knowledge of basin geometry. This is currently lacking, primarily because of a dearth of deep boreholes in the CBD area, particularly in Thorndon and Pipitea where sediment depths are estimated to be greatest.</b></p> <p>A new basin depth map for the Wellington CBD has been created by conducting a gravity survey using a modern Scintrex CG-6 gravity meter. Across the study area, 519 new high precision gravity measurements were made and a residual anomaly map created, showing a maximum amplitude anomaly of -6.2 mGal with uncertainties better than ±0.1 mGal. Thirteen two-dimensional geological profiles were modelled to fit the anomalies, then combined with existing borehole constraints to construct the basin depth map. </p> <p>Results indicate on average greater depths than in existing models, particularly in Pipitea where depths are interpreted to be as great as 450 m, a difference of 250 m. Within 1 km of shore depths are interpreted to increase further, to 600 m. The recently discovered basin bounding Aotea Fault is resolved in the gravity data, where the basement is offset by up to 13 m, gravity anomaly gradients up to 8 mGal/km are observed, and possible multiple fault strands identified. A secondary strand of the Wellington Fault is also identified in the north of Pipitea, where gravity anomaly gradients up to 18 mGal/km are observed.</p>


2021 ◽  
Author(s):  
Mirko Scheinert ◽  
Philipp Zingerle ◽  
Theresa Schaller ◽  
Roland Pail ◽  
Martin Willberg

&lt;p&gt;In the frame of the IAG Subcommission 2.4f &amp;#8220;Gravity and Geoid in Antarctica&amp;#8221; (AntGG) a first Antarctic-wide grid of ground-based gravity anomalies was released in 2016 (Scheinert et al. 2016). That data set was provided with a grid space of 10 km and covered about 73% of the Antarctic continent. Since then a considerably amount of new data has been made available, mainly collected by means of airborne gravimetry. Regions which were formerly void of any terrestrial gravity observations and have now been surveyed include especially the polar data gap originating from GOCE satellite gravimetry. Thus, it is timely to come up with an updated and enhanced regional gravity field solution for Antarctica. For this, we aim to improve further aspects in comparison to the AntGG 2016 solution: The grid spacing will be enhanced to 5 km. Instead of providing gravity anomalies only for parts of Antarctica, now the entire continent should be covered. In addition to the gravity anomaly also a regional geoid solution should be provided along with further desirable functionals (e.g. gravity anomaly vs. disturbance, different height levels).&lt;/p&gt;&lt;p&gt;We will discuss the expanded AntGG data base which now includes terrestrial gravity data from Antarctic surveys conducted over the past 40 years. The methodology applied in the analysis is based on the remove-compute-restore technique. Here we utilize the newly developed combined spherical-harmonic gravity field model SATOP1 (Zingerle et al. 2019) which is based on the global satellite-only model GOCO05s and the high-resolution topographic model EARTH2014. We will demonstrate the feasibility to adequately reduce the original gravity data and, thus, to also cross-validate and evaluate the accuracy of the data especially where different data set overlap. For the compute step the recently developed partition-enhanced least-squares collocation (PE-LSC) has been used (Zingerle et al. 2021, in review; cf. the contribution of Zingerle et al. in the same session). This method allows to treat all data available in Antarctica in one single computation step in an efficient and fast way. Thus, it becomes feasible to iterate the computations within short time once any input data or parameters are changed, and to easily predict the desirable functionals also in regions void of terrestrial measurements as well as at any height level (e.g. gravity anomalies at the surface or gravity disturbances at constant height).&lt;/p&gt;&lt;p&gt;We will discuss the results and give an outlook on the data products which shall be finally provided to present the new regional gravity field solution for Antarctica. Furthermore, implications for further applications will be discussed e.g. with respect to geophysical modelling of the Earth&amp;#8217;s interior (cf. the contribution of Schaller et al. in session G4.3).&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document